The Code is as follows:-
from tensorflow.keras.applications.mobilenet import preprocess_input
**Import of Datasets**
from tensorflow.keras.datasets import cifar10
Normalize Images by dividing pixles by 255
(train_images, train_labels), (test_images, test_labels) = cifar10.load_data()
Normalize pixel values to be between 0 and 1
train_images, test_images = train_images / 255.0, test_images / 255.0
Convert Labels to Categories
class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
plt.figure(figsize=(10,10))
for i in range(25):
plt.subplot(5,5,i+1)
plt.xticks([])
plt.yticks([])
plt.grid(False)
plt.imshow(train_images[i])
plt.xlabel(class_names[train_labels[i][0]])
plt.show()
Creating Convolution Base
m1 = Sequential()
m1.add(layers.Conv2D(128, (3, 3), activation='relu', input_shape=(256,256,3)))
m1.add(layers.MaxPooling2D((2, 2)))
m1.add(layers.Conv2D(64, (3, 3), activation='relu'))
m1.add(layers.MaxPooling2D((2, 2)))
m1.add(layers.Conv2D(32, (3, 3), activation='relu'))
m1.summary()
**Add Dense Layer On Top**
m1.add(layers.Flatten())
m1.add(layers.Dense(64, activation='relu'))
m1.add(layers.Dense(10))
m1.summary()
Compile And Train The CNN Architechture`
After this Step the Error is Occuring
m1 = Sequential()
m1.add(Conv2D(128,(3,3),activation='relu',input_shape=(256,256,3)))
m1.add(MaxPooling2D(pool_size=(2,2)))
m1.add(Conv2D(64,(3,3),activation='relu'))
m1.add(MaxPooling2D(pool_size=(2,2)))
m1.add(Conv2D(64,(3,3),activation='relu'))
m1.add(MaxPooling2D(pool_size=(2,2)))
m1.add(Flatten())
m1.add(Dense(32,activation='relu'))
m1.add(Dense(16,activation='relu'))
m1.add(Dense(10,activation='softmax'))
m1.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['acc']) # multiclass and therefore categorical_crossentropy
h1 = m1.fit(x_train,y_train,validation_data=(x_test,y_test),epochs=10)