0

I am trying to fix a widget in my Jupyter notebook that is labeled Water Rescue. It is supposed to change the data table in the output to where it shows a list of dogs with the different breeds that meet the criteria of a water rescue dog, such as Labrador Retriever Mix, Chesa Bay Retr Mix, and Newfoundland Mix. It is also supposed to render a pie chart showing the percentages of those breeds.

However, whenever I click on the Water Rescue widget, it only renders a pie chart showing the percentages of the original data table. Is there something wrong with the query within my update_dashboard function? Here is my code:

ProjectTwoDashboard.ipynb

    from jupyter_plotly_dash import JupyterDash

import dash
import dash_leaflet as dl
import dash_core_components as dcc
import dash_html_components as html
import plotly.express as px
import dash_table as dt
from dash.dependencies import Input, Output, State

import os
import numpy as np
import pandas as pd
import base64
from pymongo import MongoClient
from bson.json_util import dumps
from IPython.display import Image

#### FIX ME #####
# change animal_shelter and AnimalShelter to match your CRUD Python module file name and class name
from animal_shelter import AnimalShelter



###########################
# Data Manipulation / Model
###########################
# FIX ME change for your username and password and CRUD Python module name
username = "accuser"
password = "Superman"
shelter = AnimalShelter(username, password)


# class read method must support return of cursor object 
df = pd.DataFrame.from_records(shelter.read({}))



#########################
# Dashboard Layout / View
#########################
app = JupyterDash('ProjectTwo')

#FIX ME Add in Grazioso Salvare’s logo
image_filename = 'Grazioso Salvare Logo.png' # replace with your own image
encoded_image = base64.b64encode(open(image_filename, 'rb').read())

#FIX ME Place the HTML image tag in the line below into the app.layout code according to your design
#FIX ME Also remember to include a unique identifier such as your name or date
#html.Img(src='data:image/png;base64,{}'.format(encoded_image.decode()))

app.layout = html.Div([
    html.Div(id='hidden-div', style={'display':'none'}),
    html.Center(html.Img(src='data.image/png;base64,{}'.format(encoded_image.decode()))),
    html.Center(html.B(html.H1('SNHU CS-340 Dashboard'))),
    html.Hr(),
    html.Div(
        
#FIXME Add in code for the interactive filtering options. For example, Radio buttons, drop down, checkboxes, etc.
    dcc.RadioItems(
    id='filter-type',
    options=[
        {'label': 'Water Rescue', 'value': 'WR'},
        {'label': 'Mountain or Wilderness', 'value': 'MWR'},
        {'label': 'Disaster or Individual Tracking', 'value': 'DIT'},
        {'label': 'Reset', 'value': 'RESET'}
    ],
    value='RESET',
    labelStyle={'display':'inline-block'})
    ),
    html.Hr(),
    dt.DataTable(
        id='datatable-id',
        columns=[
            {"name": i, "id": i, "deletable": False, "selectable": True} for i in df.columns
        ],
        data=df.to_dict('records'),
#FIXME: Set up the features for your interactive data table to make it user-friendly for your client
#If you completed the Module Six Assignment, you can copy in the code you created here 
       
        editable=False,
        filter_action="native",
        sort_action="native",
        sort_mode="multi",
        column_selectable=False,
        row_selectable=False,
        row_deletable=False,
        selected_columns=[],
        selected_rows=[],
        page_action="native",
        page_current=0,
        page_size=10,
        
    ),
    html.Br(),
    html.Hr(),
#This sets up the dashboard so that your chart and your geolocation chart are side-by-side
    html.Div(className='row',
         style={'display' : 'flex'},
             children=[
        html.Div(
            id='graph-id',
            className='col s12 m6',
            ),
        html.Div(
            id='map-id',
            className='col s12 m6',
            ),
        html.H4("This is Vincent, computer science major")
    ])
        
])

#############################################
# Interaction Between Components / Controller
#############################################
    
@app.callback(
    [Output('datatable-id','data'),
     Output('datatable-id','columns')],
    [Input('filter-type', 'value')])            
def update_dashboard(filter_type):
### FIX ME Add code to filter interactive data table with MongoDB queries    
    if filter_type == 'WR':
        df = pd.DataFrame(list(shelter.read({'$and': [{'sex_upon_outcome': 'Intact Female'},
                                                    {'$or': [
                                                        {'breed': 'Laborador Retriever Mix'},
                                                        {'breed': 'Chesa Bay Retr Mix'},
                                                        {'breed': 'Newfoundland Mix'},
                                                        {'breed': 'Newfoundland/Laborador Retriever'},
                                                        {'breed': 'Newfoundland/Australian Cattle Dog'},
                                                        {'breed': 'Newfoundland/Great Pyrenees'}
                                                    ]},
                                                    {'$and': [{'age_upon_outcome_in_weeks': {'$gte': 26}},
                                                             {'age_upon_outcome_in_weeks': {'$lte': 156}}]
                                                    }]
                                            }))) 
                                           
    elif filter_type == 'MWR':
        #Grazioso breeds and ages
        df = pd.DataFrame(list(shelter.read({'$and': [{'sex_upon_outcome': 'Intact Male'},
                                                     {'$or': [
                                                         {'breed': 'German Shepherd'},
                                                         {'breed': 'Alaskan Malamute'},
                                                         {'breed': 'Old English Sheepdog'},
                                                         {'breed': 'Rottweiler'},
                                                         {'breed': 'Siberian Husky'}
                                                     ]},
                                                    {'$and': [{'age_upon_outcome_in_weeks': {'$gte': 26}},
                                                             {'age_upon_outcome_in_weeks': {'$lte': 156}}]
                                                     }]
                                             })))
                                            
    #adjusts the read request for the desired dog type and status
    elif filter_type == 'DRIT':
        #breeds and ages
        df = pd.DataFrame(list(shelter.read({'$and': [{'sex_upon_outcome': 'Intact Male'},
                                                     {'$or': [
                                                         {'breed': 'Doberman Pinscher'},
                                                         {'breed': 'German Shepherd'},
                                                         {'breed': 'Golden Retriever'},
                                                         {'breed': 'Bloodhound'},
                                                         {'breed': 'Rottweiler'}
                                                     ]},
                                                     {'$and': [{'age_upon_outcome_in_weeks': {'$gte': 20}},
                                                              {'age_upon_outcome_in_weeks': {'$lte': 300}}]
                                                      }]
                                             })))
                                                     
                                            
    #resets the search no filter
    elif filter_type == 'RESET':
        df = pd.DataFrame.from_records(shelter.read({}))
        
    columns=[{"name": i, "id": i, "deletable": False, "selectable": True} for i in df.columns]
    data=df.to_dict('records')
        
        
    return (data,columns)




@app.callback(
    Output('datatable-id', 'style_data_conditional'),
    [Input('datatable-id', 'selected_columns')]
)
def update_styles(selected_columns):
    return [{
        'if': { 'column_id': i },
        'background_color': '#D2F3FF'
    } for i in selected_columns]

@app.callback(
    Output('graph-id', "children"),
    [Input('datatable-id', "derived_viewport_data")])
def update_graphs(viewData):
    ###FIX ME ####
    dff = pd.DataFrame.from_dict(viewData)
    names = dff['breed'].value_counts().keys().tolist()
    values = dff['breed'].value_counts().tolist()
    # add code for chart of your choice (e.g. pie chart) 
    return [
        dcc.Graph(            
            figure = px.pie(
                data_frame = dff,
                values = values,
                names = names,
                color_discrete_sequence=px.colors.sequential.RdBu,
                width = 800,
                height = 500
            )
        )    
    ]

@app.callback(
    Output('map-id', "children"),
    [Input('datatable-id', "derived_viewport_data"),
    Input('datatable-id', 'selected_rows'),
    Input('datatable-id', 'selected_columns')])
def update_map(viewData, selected_rows, selected_columns):
#FIXME: Add in the code for your geolocation chart
#If you completed the Module Six Assignment, you can copy in the code you created here.
    dff = pd.DataFrame.from_dict(viewData)
    
    if selected_rows == []:
        selected_rows = [0]
        
    # Austin TX is at [30.75, -97.48]
    if len(selected_rows) == 1:
        return [
            dl.Map(style={'width':'1000px', 'height': '500px'}, center=[30.75,-97.48], zoom=10, children=[
                dl.TileLayer(id="base-layer-id"),
            
                #marker with tool tip and popup
                dl.Marker(position=[(dff.iloc[selected_rows[0],13]), (dff.iloc[selected_rows[0],14])], children=[
                    dl.Tooltip(dff.iloc[selected_rows[0],4]),
                    dl.Popup([
                        html.H4("Animal Name"),
                        html.P(dff.iloc[selected_rows[0],9]),
                        html.H4("Sex"),
                        html.P(dff.iloc[selected_rows[0],12]),
                        html.H4("Breed"),
                        html.P(dff.iloc[selected_rows[0],4]),
                        html.H4("Age"),
                        html.P(dff.iloc[selected_rows[0],15])
                    ])
                ])
            ])
        ]



app

animal_shelter.py

    from pymongo import MongoClient
from bson.objectid import ObjectId
from bson.json_util import dumps

class AnimalShelter(object):
    """ CRUD operations for Animal collection in MongoDB """

    def __init__(self,username,password):
        # Initializing the MongoClient. This helps to 
        # access the MongoDB databases and collections. 
        # init to connect to mongodb without authentication
        self.client = MongoClient('mongodb://localhost:55996')
        # init connect to mongodb with authentication
        #self.client = MongoClient('mongodb://%s:%s@localhost:55996/?authMechanism=DEFAULT&authSource=AAC'%(username, password))
        self.database = self.client['AAC']

# Complete this create method to implement the C in CRUD.
    def create(self, data):
        if data is not None:
            self.database.animals.insert(data)  # data should be dictionary  
            return True # Tells whether the create function ran successfully
        else:
            raise Exception("Nothing to save ...")

# Create method to implement the R in CRUD.     
    def read(self, data):
        if data:
            cursor = self.database.animals.find(data, {'_id':False})
        else:
            cursor = self.database.animals.find({}, {"_id": False})
        return cursor

# Update method to implement the U in CRUD.
    def update(self, data, new_values):
        updated_data = {"name":"Rhonda","age_upon_outcome":"2 years"}
        if self.database.animals.count(data):
            self.database.animals.update(data, new_values)
            cursor = self.database.animals.find(updated_data)        
            json_data = dumps(cursor)
            return json_data
        else:
            raise Exception("Nothing to update ...") 
            
# Delete method to implement the D in CRUD
    def delete(self, data):
        result = self.database.animals.find_one_and_delete(data)
        # print the _id key only if the result is not None
        if("_id" in result):
            print("find_one_and_delete ID:",result["_id"])
        else:
            print("Nothing to delete")

1 Answers1

0

It turns out I had spell Labrador correctly in my first query to fix the first widget for Water Rescue.

I changed

{'breed': 'Laborador Retriever Mix'},

to

{'breed': 'Labrador Retriever Mix'},

For my third widget regarding Disaster and Individual Tracking, I had to make the filter button value match with the value declared near the top.

I changed

{'label': 'Disaster or Individual Tracking', 'value': 'DIT'},

to

{'label': 'Disaster or Individual Tracking', 'value': 'DRIT'},