Let's say I want to add raw point estimates with 95% confidence intervals to forest plot. What's the best way to achieve that? Here's a simple example of creating a forest plot (without frequentist/raw estimates):
import bambi as bmb
import pandas as pd
import arviz as az
df_simple = pd.DataFrame({
'x': ['A', 'B', 'C'],
'y': [10, 20, 30],
'n': [100, 100, 100]
})
m = bmb.Model('p(y, n) ~ 0 + x', data=df_simple, family='binomial')
idata = m.fit(cores=4)
m.predict(idata)
az.plot_forest(idata, var_names='p(y, n)_mean', combined=True)