0

I am trying to plot the significant variable against the probability of conflict (0,1). My Bernoulli #GLM without interaction works without error. My goal is to end with something this but I currently can not get past predicting my values.

#works-expands gird with mean of variables
MyData1 <- expand.grid(Road_density = seq(0, 100, length = 1000),
Livestock_density = 81.98442,
Distance_roads = 3453.99, 
Distance_recreational = 7490.875,
Elevation = 379.1109)

#works
X <- model.matrix(~ Livestock_density + Distance_roads + Distance_recreational +
                  Elevation + Road_density, data = MyData1)
head(MyData1)

coef(Bern3) #output works

#Calculate predicted values for model M1
MyData1$Pred <-X %*% coef(Bern3) #does not work

MyData1$Pred <-coef(Bern3) %*% X  #found sugesstion to swap but does not work either

#can not run code below here, due to error- Error in X %*% coef(Bern3) : non-conformable arguments

#Calculate on the predictor scale
MyData1$Pi  <- exp(MyData1$Pred) / (1 + exp(MyData1$Pred))

#Calculate standard error spot (SE) for predicted values for model M2
MyData1$se <- sqrt( (X %*% vcov(Bern3) %*% t(X))  )

#Calculate the SEs on the scale of the predictor function
MyData1$SeUp  <- exp(MyData1$Pred + 1.96 *MyData1$se) / 
  (1 + exp(MyData1$Pred  + 1.96 *MyData$se))
MyData1$SeLo  <- exp(MyData1$Pred - 1.96 *MyData1$se) / 
  (1 + exp(MyData1$Pred  - 1.96 *MyData1$se))
Phil
  • 7,287
  • 3
  • 36
  • 66
SDLun
  • 1
  • 1

0 Answers0