I'm trying to use my pre-trained huggingface model to predict.
outputs = model(
ids,
mask,
token_type_ids
)
outputs = torch.sigmoid(outputs.last_hidden_state).cpu().detach().numpy()
return outputs[0][0]
The I got is
[[[0.5144298 0.68467325 0.4045368 ... 0.5698948 0.6843927 0.230076 ]
[0.526383 0.6108195 0.46920577 ... 0.6635995 0.70778817 0.22947823]
[0.47112644 0.6557672 0.49308282 ... 0.61219037 0.5811446 0.22059086]
...
[0.46904904 0.66370267 0.4091996 ... 0.5381582 0.70973885 0.2500361 ]
[0.47025025 0.6625398 0.40454543 ... 0.5423772 0.71071064 0.24768841]
[0.47398427 0.658539 0.40038437 ... 0.53121835 0.7094869 0.2417065 ]]]
What I want is
[{'label': 'POSITIVE', 'score': 0.9998743534088135},
{'label': 'NEGATIVE', 'score': 0.9996669292449951}]
Thanks ahead!!!