I have a model of saved_model format, and I need convert it to tflite with quantization.
The problem is model have two input nodes, named "serving_default_input.1" and "serving_default_input.81", and I'm confuse about code of convertion.
I write below code with reference(link).
import numpy as np
import tensorflow as tf
def representative_dataset_gen():
for _ in range(20):
yield [{
"serving_default_input.1": np.random.rand(1, 3, 240, 320).astype(np.float32),
"serving_default_input.81": np.random.rand(1, 3, 240, 320).astype(np.float32)
}]
converter = tf.lite.TFLiteConverter.from_saved_model("./stereonet_240x320")
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
converter.inference_input_type = tf.uint8 # or tf.int8
converter.inference_output_type = tf.uint8 # or tf.int8
converter.representative_dataset = representative_dataset_gen
tflite_model = converter.convert()
with open("./stereonet_240x320.tflite", "wb") as fp:
fp.write(tflite_model)
How do I fix my code?
Thanks for your help!!!