I found Irn's answer in this question helpful. I implemented this to obtain:
import 'dart:async';
main() {
IntStore intStore = IntStore();
AsyncMutex mutex = AsyncMutex();
print("running getInt(A)");
mutex.run(() => intStore.getInt("A"));
print("running getInt(A)");
mutex.run(() => intStore.getInt("A"));
print("running getInt(B)");
mutex.run(() => intStore.getInt("B"));
print("running getInt(A)");
mutex.run(() => intStore.getInt("A"));
print("running getInt(C)");
mutex.run(() => intStore.getInt("C"));
print("running getInt(D)");
mutex.run(() => intStore.getInt("D"));
}
class IntStore {
final Map _store = <String, int>{};
Future fetchInt(String intName) async {
print("Fetching: $intName");
await doSomeWorkAsynchronously(intName);
}
Future<int> getInt(String intName) async {
if (_store.containsKey(intName)) {
print("Cached: $intName");
return _store[intName];
} else {
await fetchInt(intName);
return _store[intName];
}
}
Future doSomeWorkAsynchronously(String intName) async {
await Future.delayed(const Duration(seconds: 3));
_store[intName] = 3;
print("Fetched: $intName");
}
}
class AsyncMutex {
Future _next = new Future.value(null);
/// Request [operation] to be run exclusively.
///
/// Waits for all previously requested operations to complete,
/// then runs the operation and completes the returned future with the
/// result.
Future<T> run<T>(Future<T> operation()) {
var completer = new Completer<T>();
_next.whenComplete(() {
completer.complete(new Future<T>.sync(operation));
});
return _next = completer.future;
}
}
which returns
running getInt(A)
running getInt(A)
running getInt(B)
running getInt(A)
running getInt(C)
running getInt(D)
Fetching: A
Fetched: A
Cached: A
Fetching: B
Fetched: B
Cached: A
Fetching: C
Fetched: C
Fetching: D
Fetched: D
where the problem here is that each fetchInt call, while may be necessary, will block each other. This is more inefficient than before. I modified the implementation to be more efficient:
import 'dart:async';
main() {
IntStore intStore = IntStore();
print("running getInt(A)");
intStore.getInt("A");
print("running getInt(A)");
intStore.getInt("A");
print("running getInt(B)");
intStore.getInt("B");
print("running getInt(A)");
intStore.getInt("A");
print("running getInt(C)");
intStore.getInt("C");
print("running getInt(D)");
intStore.getInt("D");
}
class IntStore {
final Map _store = <String, int>{};
final Map _mutexStore = <String, AsyncMutex>{};
Future<void> fetchInt(String intName) async {
if (!_store.containsKey(intName)) {
print("Fetching: $intName");
await doSomeWorkAsynchronously(intName);
}
}
Future<int> getInt(String intName) async {
if (_mutexStore.containsKey(intName)) {
print("Mutex already here: $intName");
await _mutexStore[intName].run<void>(() => fetchInt(intName));
} else {
print("Creating Mutex: $intName");
_mutexStore[intName] = AsyncMutex();
await _mutexStore[intName].run<void>(() => fetchInt(intName));
}
print("Passing: $intName");
return _store[intName];
}
Future doSomeWorkAsynchronously(String intName) async {
await Future.delayed(const Duration(seconds: 3));
_store[intName] = 3;
print("Fetched: $intName");
}
}
class AsyncMutex {
Future _next = new Future.value(null);
/// Request [operation] to be run exclusively.
///
/// Waits for all previously requested operations to complete,
/// then runs the operation and completes the returned future with the
/// result.
Future<T> run<T>(Future<T> operation()) {
var completer = new Completer<T>();
_next.whenComplete(() {
completer.complete(new Future<T>.sync(operation));
});
return _next = completer.future;
}
}
which returns
running getInt(A)
Creating Mutex: A
running getInt(A)
Mutex already here: A
running getInt(B)
Creating Mutex: B
running getInt(A)
Mutex already here: A
running getInt(C)
Creating Mutex: C
running getInt(D)
Creating Mutex: D
Fetching: A
Fetching: B
Fetching: C
Fetching: D
Fetched: A
And will therefore return each int as fast as possible, keeping concurrency between different calls, but blocking repeated calls for the same int.