It is a reference to this:
Alternatives to kmeans() for spotting small clusters for k=2
In the comments it is suggested something like this:
cc = ClusterR::GMM(mtcars, gaussian_comps = 2); predict(cc, mtcars)
But assume I have a tibble database db
, I would like a code working like:
db %>%
mutate(cluster = clustering_function(selection())) -> db
Whereas selection is a selector of columns, and the clustering function put together the clustering methods and the assignment of predicted values.