The usual approach is to scan the incoming text from left to right. At each character position, the lexical analyser selects the longest string which fits some pattern for a "lexeme", which is either a token or ignored input (whitespace and comments, for example). Then the scan continues at the next character.
Lexical patterns are often described using regular expressions, but the standard regular expression module re
is not as much help as it could be for this procedure, because it does not have the facility of checking multiple regular expressions in parallel. (And neither does the possible future replacement, the regex
module.) Or, more precisely, the library can check multiple expressions in parallel (using alternation syntax, (...|...|...)
), but it lacks an interface which can report which of the alternatives was matched. [Note 1]. So it would be necessary to try every possible pattern one at a time and select whichever one turns out to have the longest match.
Note that the matches are always anchored at the current input point; the lexical analyser does not search for a matching pattern. Every input character becomes part of some lexeme, even if that lexeme is ignored, and lexemes do not overlap.
You can write such an analyser by hand for a simple language, but C++ is hardly a simple language. Hand-built lexical analysers most certainly exist, but all the ones I've seen are thousands of lines of not very readable code. So it's usually easier to build an analyzer automatically using software designed for that purpose. These have been around for a long time -- Lex was written almost 50 years ago, for example -- and if you are planning on writing more than one lexical analyser, you would be well advised to investigate some of the available tools.
Notes
- The PCRE2 and Oniguruma regex libraries provide a "callout" feature which I believe could be used for this purpose. I haven't actually seen it used in lexical analysis, but it's a fairly recent addition, particularly for Oniguruma, and as far as I can see, the Python bindings for those two libraries do not wrap the callout feature. (Although, as usual with Python bindings to C libraries, documentation is almost non-existent, so I can't say for certain.)