I Used SMOTE and Tomek methods for imbalanced classes that I have. I'm trying to do boosted regression tree.
It runs smoothly until I create the confusion matrix I have this error (
Error: data
and reference
should be factors with the same levels.
### SMOTE and Tomek
NOAA_SMOTE= read.csv("NOAA_SMOTE.csv", TRUE, ",")
train.index <- createDataPartition(NOAA_SMOTE$japon, p = .7, list = FALSE)
train <- NOAA_SMOTE[ train.index,]
test <- NOAA_SMOTE[-train.index,]
tomek = ubTomek(train[,-1], train[,1])
model_train_tomek = cbind(tomek$X,tomek$Y)
names(model_train_tomek)[1] = "japon"
removed.index = tomek$id.rm
train$japon = as.factor(train$japon)
train_tomek = train[-removed.index,]
## SMOTE after tomek links
traintomeksmote <- SMOTE(japon ~ ., train_tomek, perc.over = 2000,perc.under = 100)
fitControlSmoteTomek<- trainControl(## 10-fold CV
method = "repeatedcv",
number = 10,
repeats = 3,
## Estimate class probabilities
classProbs = TRUE,
## Evaluate performance using
## the following function
summaryFunction = twoClassSummary)
gbmGridSmoteTomek <- expand.grid(interaction.depth = c(3,4, 5, 6),
n.trees = (1:30)*50,
shrinkage = c(0.1,0.001,0.75,0.0001),
n.minobsinnode = 10)
gbmFitNOAASMOTETomek <- caret::train (make.names(japon) ~ ., data = traintomeksmote,
method = "gbm",
trControl = fitControlSmoteTomek,
distribution = "bernoulli",
verbose = FALSE,
tuneGrid = gbmGridSmoteTomek,
bag.fraction=0.5,
## Specify which metric to optimize
metric = "ROC")
test$japon = as.factor(test$japon)
PredNOAASMOTETomek <- predict(gbmFitNOAASMOTETomek, newdata= test ,type='prob')
cmSMOTETomekNOAA = confusionMatrix(PredNOAASMOTETomek , as.factor(test$japon), mode="everything")
part of the data
[enter image description here](https://i.stack.imgur.com/jPgI9.png)