input_size = [765, 500, 72]
model = Sequential()
add = model.add
add(l.Conv1D(256, kernel_size=3, strides=2, activation='relu')
add(l.Dropout(0.5))
add(l.Conv1D(256, kernel_size=3, strides=2, activation='relu')
add(l.Dropout(0.5))
add(l.GlobalAveragePooling1D())
add(l.Dense(100, activation="relu"))
add(l.Dense(3, activation="softmax"))
(None, 249, 256)
(None, 249, 256)
(None, 124, 256)
(None, 124, 256)
(None, 256)
(None, 100)
(None, 3)
This is tensorflow model struc and summary. Tensorflow to Pytorch CNN model. Use Conv1D
[Tensorflow Model summary]