I have a non-stationary (Periodicity+Trend) time series (Ts) data of one dimension which contains nan values. I want to generate 10000 pseudo-random values of the Ts based on its probability distribution. DATA_LINK distribution of normalized data .If there is any issue in downloading, a part of the data I pasted here.
NaN=np.nan; Ts=np.array([384.540,378.233,376.858,378.497,NaN,NaN,NaN,NaN,NaN,NaN,NaN,390.409,386.174,382.2768,382.082,383.721,NaN,NaN,NaN,NaN,NaN,NaN,NaN,391.841,389.513,382.835,381.387,384.404,NaN,NaN,NaN,NaN,NaN,NaN,NaN,393.871,391.176,385.041,385.270,385.570,NaN,NaN,NaN,NaN,NaN,NaN,NaN,398.377,395.187,390.173,387.628,388.129,NaN,NaN,NaN,NaN,NaN,NaN,NaN,395.886,390.830,389.398,391.617,NaN,NaN,NaN,NaN,NaN,NaN,399.943,390.400,391.019,393.635,NaN,NaN,NaN,NaN,NaN,NaN,403.128,399.594,394.948,394.561,395.420,NaN,NaN,NaN,NaN,NaN,NaN,NaN,405.345,403.449,398.429,395.195,397.791,NaN]);
This I have tried...
rr=(Ts-np.nanmean(Ts))/np.nanstd(Ts); # normalization
mu, sigma = np.nanmean(rr), np.nanstd(rr) # mean and standard dev
q=np.random.uniform(mu, sigma, rr.shape[0]);` # uniform
distribution considering
I want to know how to create pseudo random values of same dimension of Ts(contains NaN+non-NaN) using Monte Carlo.
Thanks in advance.