0
  • I have a 1 input 7 output neural network.
  • The input is an image and all the 7 outputs are different categories.
  • My images are stored in image directory.
  • And, labels are stored in a CSV file.

I have created a list where x_train_path is a path to the image directory and all y_train_... are list of labels, like this.

x_train_path = [x for x in df_train.filepath]
y_train_gender = [x for x in df_train.gender]
y_train_masterCategory = [x for x in df_train.masterCategory]
y_train_subCategory = [x for x in df_train.subCategory]
y_train_articleType = [x for x in df_train.articleType]
y_train_baseColour = [x for x in df_train.baseColour]
y_train_season = [x for x in df_train.season]
y_train_usage = [x for x in df_train.usage]

I wanted to create a tf.data.Dataset() so I am doing the following:

def load_and_preprocess_image(path):
  image_string = tf.compat.as_str_any(path)
  image_string = tf.io.read_file(path)
  img = tf.io.decode_png(image_string, channels = 3)
  return tf.image.resize(img, [500, 500])

def generator():
  for img, lable1, lable2, lable3, lable4, lable5, lable6, lable7 in zip(x_train_path, y_train_gender, y_train_masterCategory, y_train_subCategory, y_train_articleType, y_train_baseColour, y_train_season, y_train_usage):

    image = load_and_preprocess_image(path = img)

    yield image, {"gender_output":lable1,
                  "master_category_output":lable2,
                  "sub_category_output":lable3,
                  "article_type_output":lable4,
                  "base_color_output":lable5,
                  "season_output":lable6,
                  "usage_output":lable7}

dataset = tf.data.Dataset.from_generator(generator, output_types = (tf.float64, {"gender_output":tf.int64,
                                                                                 "master_category_output":tf.int64,
                                                                                 "sub_category_output":tf.int64,
                                                                                 "article_type_output":tf.int64,
                                                                                 "base_color_output":tf.int64,
                                                                                 "season_output":tf.int64,
                                                                                 "usage_output":tf.int64}))
dataset = dataset.batch(64)

and, I have compiled the model like this:

model.compile(optimizer = 'adam',
              loss = {"gender_output" : "categorical_crossentropy",
                      "master_category_output" : "categorical_crossentropy",
                      "sub_category_output" : "categorical_crossentropy",
                      "article_type_output" : "categorical_crossentropy",
                      "base_color_output" : "categorical_crossentropy",
                      "season_output" : "categorical_crossentropy",
                      "usage_output" : "categorical_crossentropy"}
              )

but when I am fitting the model using model.fit(dataset, epochs = 1), it is giving me this error:

---------------------------------------------------------------------------
InvalidArgumentError                      Traceback (most recent call last)
<ipython-input-29-4dae7d62ef06> in <module>
----> 1 model.fit(dataset, epochs = 1)

1 frames
/usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/execute.py in quick_execute(op_name, num_outputs, inputs, attrs, ctx, name)
     53     ctx.ensure_initialized()
     54     tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
---> 55                                         inputs, attrs, num_outputs)
     56   except core._NotOkStatusException as e:
     57     if name is not None:

InvalidArgumentError: Graph execution error:

Detected at node 'categorical_crossentropy_5/mul' defined at (most recent call last):
    File "/usr/lib/python3.7/runpy.py", line 193, in _run_module_as_main
      "__main__", mod_spec)
    File "/usr/lib/python3.7/runpy.py", line 85, in _run_code
      exec(code, run_globals)
    File "/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py", line 16, in <module>
      app.launch_new_instance()
    File "/usr/local/lib/python3.7/dist-packages/traitlets/config/application.py", line 846, in launch_instance
      app.start()
    File "/usr/local/lib/python3.7/dist-packages/ipykernel/kernelapp.py", line 612, in start
      self.io_loop.start()
    File "/usr/local/lib/python3.7/dist-packages/tornado/platform/asyncio.py", line 132, in start
      self.asyncio_loop.run_forever()
    File "/usr/lib/python3.7/asyncio/base_events.py", line 541, in run_forever
      self._run_once()
    File "/usr/lib/python3.7/asyncio/base_events.py", line 1786, in _run_once
      handle._run()
    File "/usr/lib/python3.7/asyncio/events.py", line 88, in _run
      self._context.run(self._callback, *self._args)
    File "/usr/local/lib/python3.7/dist-packages/tornado/ioloop.py", line 758, in _run_callback
      ret = callback()
    File "/usr/local/lib/python3.7/dist-packages/tornado/stack_context.py", line 300, in null_wrapper
      return fn(*args, **kwargs)
    File "/usr/local/lib/python3.7/dist-packages/tornado/gen.py", line 1233, in inner
      self.run()
    File "/usr/local/lib/python3.7/dist-packages/tornado/gen.py", line 1147, in run
      yielded = self.gen.send(value)
    File "/usr/local/lib/python3.7/dist-packages/ipykernel/kernelbase.py", line 365, in process_one
      yield gen.maybe_future(dispatch(*args))
    File "/usr/local/lib/python3.7/dist-packages/tornado/gen.py", line 326, in wrapper
      yielded = next(result)
    File "/usr/local/lib/python3.7/dist-packages/ipykernel/kernelbase.py", line 268, in dispatch_shell
      yield gen.maybe_future(handler(stream, idents, msg))
    File "/usr/local/lib/python3.7/dist-packages/tornado/gen.py", line 326, in wrapper
      yielded = next(result)
    File "/usr/local/lib/python3.7/dist-packages/ipykernel/kernelbase.py", line 545, in execute_request
      user_expressions, allow_stdin,
    File "/usr/local/lib/python3.7/dist-packages/tornado/gen.py", line 326, in wrapper
      yielded = next(result)
    File "/usr/local/lib/python3.7/dist-packages/ipykernel/ipkernel.py", line 306, in do_execute
      res = shell.run_cell(code, store_history=store_history, silent=silent)
    File "/usr/local/lib/python3.7/dist-packages/ipykernel/zmqshell.py", line 536, in run_cell
      return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
    File "/usr/local/lib/python3.7/dist-packages/IPython/core/interactiveshell.py", line 2855, in run_cell
      raw_cell, store_history, silent, shell_futures)
    File "/usr/local/lib/python3.7/dist-packages/IPython/core/interactiveshell.py", line 2881, in _run_cell
      return runner(coro)
    File "/usr/local/lib/python3.7/dist-packages/IPython/core/async_helpers.py", line 68, in _pseudo_sync_runner
      coro.send(None)
    File "/usr/local/lib/python3.7/dist-packages/IPython/core/interactiveshell.py", line 3058, in run_cell_async
      interactivity=interactivity, compiler=compiler, result=result)
    File "/usr/local/lib/python3.7/dist-packages/IPython/core/interactiveshell.py", line 3249, in run_ast_nodes
      if (await self.run_code(code, result,  async_=asy)):
    File "/usr/local/lib/python3.7/dist-packages/IPython/core/interactiveshell.py", line 3326, in run_code
      exec(code_obj, self.user_global_ns, self.user_ns)
    File "<ipython-input-29-4dae7d62ef06>", line 1, in <module>
      model.fit(dataset, epochs = 1)
    File "/usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py", line 64, in error_handler
      return fn(*args, **kwargs)
    File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1409, in fit
      tmp_logs = self.train_function(iterator)
    File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1051, in train_function
      return step_function(self, iterator)
    File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1040, in step_function
      outputs = model.distribute_strategy.run(run_step, args=(data,))
    File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1030, in run_step
      outputs = model.train_step(data)
    File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 890, in train_step
      loss = self.compute_loss(x, y, y_pred, sample_weight)
    File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 949, in compute_loss
      y, y_pred, sample_weight, regularization_losses=self.losses)
    File "/usr/local/lib/python3.7/dist-packages/keras/engine/compile_utils.py", line 201, in __call__
      loss_value = loss_obj(y_t, y_p, sample_weight=sw)
    File "/usr/local/lib/python3.7/dist-packages/keras/losses.py", line 139, in __call__
      losses = call_fn(y_true, y_pred)
    File "/usr/local/lib/python3.7/dist-packages/keras/losses.py", line 243, in call
      return ag_fn(y_true, y_pred, **self._fn_kwargs)
    File "/usr/local/lib/python3.7/dist-packages/keras/losses.py", line 1788, in categorical_crossentropy
      y_true, y_pred, from_logits=from_logits, axis=axis)
    File "/usr/local/lib/python3.7/dist-packages/keras/backend.py", line 5153, in categorical_crossentropy
      return -tf.reduce_sum(target * tf.math.log(output), axis)
Node: 'categorical_crossentropy_5/mul'
Detected at node 'categorical_crossentropy_5/mul' defined at (most recent call last):
    File "/usr/lib/python3.7/runpy.py", line 193, in _run_module_as_main
      "__main__", mod_spec)
    File "/usr/lib/python3.7/runpy.py", line 85, in _run_code
      exec(code, run_globals)
    File "/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py", line 16, in <module>
      app.launch_new_instance()
    File "/usr/local/lib/python3.7/dist-packages/traitlets/config/application.py", line 846, in launch_instance
      app.start()
    File "/usr/local/lib/python3.7/dist-packages/ipykernel/kernelapp.py", line 612, in start
      self.io_loop.start()
    File "/usr/local/lib/python3.7/dist-packages/tornado/platform/asyncio.py", line 132, in start
      self.asyncio_loop.run_forever()
    File "/usr/lib/python3.7/asyncio/base_events.py", line 541, in run_forever
      self._run_once()
    File "/usr/lib/python3.7/asyncio/base_events.py", line 1786, in _run_once
      handle._run()
    File "/usr/lib/python3.7/asyncio/events.py", line 88, in _run
      self._context.run(self._callback, *self._args)
    File "/usr/local/lib/python3.7/dist-packages/tornado/ioloop.py", line 758, in _run_callback
      ret = callback()
    File "/usr/local/lib/python3.7/dist-packages/tornado/stack_context.py", line 300, in null_wrapper
      return fn(*args, **kwargs)
    File "/usr/local/lib/python3.7/dist-packages/tornado/gen.py", line 1233, in inner
      self.run()
    File "/usr/local/lib/python3.7/dist-packages/tornado/gen.py", line 1147, in run
      yielded = self.gen.send(value)
    File "/usr/local/lib/python3.7/dist-packages/ipykernel/kernelbase.py", line 365, in process_one
      yield gen.maybe_future(dispatch(*args))
    File "/usr/local/lib/python3.7/dist-packages/tornado/gen.py", line 326, in wrapper
      yielded = next(result)
    File "/usr/local/lib/python3.7/dist-packages/ipykernel/kernelbase.py", line 268, in dispatch_shell
      yield gen.maybe_future(handler(stream, idents, msg))
    File "/usr/local/lib/python3.7/dist-packages/tornado/gen.py", line 326, in wrapper
      yielded = next(result)
    File "/usr/local/lib/python3.7/dist-packages/ipykernel/kernelbase.py", line 545, in execute_request
      user_expressions, allow_stdin,
    File "/usr/local/lib/python3.7/dist-packages/tornado/gen.py", line 326, in wrapper
      yielded = next(result)
    File "/usr/local/lib/python3.7/dist-packages/ipykernel/ipkernel.py", line 306, in do_execute
      res = shell.run_cell(code, store_history=store_history, silent=silent)
    File "/usr/local/lib/python3.7/dist-packages/ipykernel/zmqshell.py", line 536, in run_cell
      return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
    File "/usr/local/lib/python3.7/dist-packages/IPython/core/interactiveshell.py", line 2855, in run_cell
      raw_cell, store_history, silent, shell_futures)
    File "/usr/local/lib/python3.7/dist-packages/IPython/core/interactiveshell.py", line 2881, in _run_cell
      return runner(coro)
    File "/usr/local/lib/python3.7/dist-packages/IPython/core/async_helpers.py", line 68, in _pseudo_sync_runner
      coro.send(None)
    File "/usr/local/lib/python3.7/dist-packages/IPython/core/interactiveshell.py", line 3058, in run_cell_async
      interactivity=interactivity, compiler=compiler, result=result)
    File "/usr/local/lib/python3.7/dist-packages/IPython/core/interactiveshell.py", line 3249, in run_ast_nodes
      if (await self.run_code(code, result,  async_=asy)):
    File "/usr/local/lib/python3.7/dist-packages/IPython/core/interactiveshell.py", line 3326, in run_code
      exec(code_obj, self.user_global_ns, self.user_ns)
    File "<ipython-input-29-4dae7d62ef06>", line 1, in <module>
      model.fit(dataset, epochs = 1)
    File "/usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py", line 64, in error_handler
      return fn(*args, **kwargs)
    File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1409, in fit
      tmp_logs = self.train_function(iterator)
    File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1051, in train_function
      return step_function(self, iterator)
    File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1040, in step_function
      outputs = model.distribute_strategy.run(run_step, args=(data,))
    File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1030, in run_step
      outputs = model.train_step(data)
    File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 890, in train_step
      loss = self.compute_loss(x, y, y_pred, sample_weight)
    File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 949, in compute_loss
      y, y_pred, sample_weight, regularization_losses=self.losses)
    File "/usr/local/lib/python3.7/dist-packages/keras/engine/compile_utils.py", line 201, in __call__
      loss_value = loss_obj(y_t, y_p, sample_weight=sw)
    File "/usr/local/lib/python3.7/dist-packages/keras/losses.py", line 139, in __call__
      losses = call_fn(y_true, y_pred)
    File "/usr/local/lib/python3.7/dist-packages/keras/losses.py", line 243, in call
      return ag_fn(y_true, y_pred, **self._fn_kwargs)
    File "/usr/local/lib/python3.7/dist-packages/keras/losses.py", line 1788, in categorical_crossentropy
      y_true, y_pred, from_logits=from_logits, axis=axis)
    File "/usr/local/lib/python3.7/dist-packages/keras/backend.py", line 5153, in categorical_crossentropy
      return -tf.reduce_sum(target * tf.math.log(output), axis)
Node: 'categorical_crossentropy_5/mul'
2 root error(s) found.
  (0) INVALID_ARGUMENT:  required broadcastable shapes
     [[{{node categorical_crossentropy_5/mul}}]]
     [[categorical_crossentropy_3/cond/then/_33/categorical_crossentropy_3/cond/cond/pivot_t/_366/_405]]
  (1) INVALID_ARGUMENT:  required broadcastable shapes
     [[{{node categorical_crossentropy_5/mul}}]]
0 successful operations.
0 derived errors ignored. [Op:__inference_train_function_94694]

Can anyone help?

Adarsh Wase
  • 1,727
  • 3
  • 12
  • 26
  • The best way is to put separate your images into different folders, then use this tf.keras.utils.image_dataset_from_directory() which will automatically infer the labels for you, same as tf.dataDataset. – Mohammad Ahmed Nov 07 '22 at 14:26
  • You are doing it in the wrong a way put the labels in a container with integers associated with it, as 1,2,3,4..., and then you can convert it to a OneHot Vector, therefore, this is throwing this error. and also use SparseCategoricalloss as Once not for each label individually. – Mohammad Ahmed Nov 07 '22 at 14:29
  • This is impossible to answer without knowing what `model` looks like. – xdurch0 Nov 07 '22 at 15:42

0 Answers0