0

$$ \partial_{t}{v}+\frac{( v \cdot \nabla) \cdot v }{ A}=-\frac{\nabla{p_{1}}}{ \rho_{0} A}-\frac{e\rho(v \times B)}{\rho A}--e(v \cdot \Omega)(B\cdot \nabla)v+(\frac{\nabla{p_{1}}}{\rho_{0}} \times \Omega) \cdot \nabla{v}-\frac{eE}{A}+-e^{2}(E \cdot B)\Omega-(E \times \Omega) \cdot \nabla{v} $$

I have to find $p_{1}$ from this equation above where $v=-\nabla{\phi}$.How to do it in Mathematica? Here dot means diff w.r.t 't'

I tried to find out $p_{1}$ writing in Mathematica .It's showing errors

  • 1
    This site doesn't support LaTex. You can post it on https://math.stackexchange.com/ instead. –  Nov 06 '22 at 20:07

0 Answers0