my problem is that i wan my program to say just the new object that appear in front of the camera and not keep saying and repeating the object it sees, like i want it to say 'person' just one time when it sees a person , and when something new came into the frame like a cup then it will say 'cup' just one time, I have been told that to do that i should catch the last object in the last frame in a variable so it will be the thing that will be spoken . but it is not clear to me how to do that in code , i am using opencv, yolov3, pyttsx3
import cv2
import numpy as np
import pyttsx3
net = cv2.dnn.readNet('yolov3-tiny.weights', 'yolov3-tiny.cfg')
classes = []
with open("coco.names.txt", "r") as f:
classes = f.read().splitlines()
cap = cv2.VideoCapture(0)
font = cv2.FONT_HERSHEY_PLAIN
colors = np.random.uniform(0, 255, size=(100, 3))
while True:
_, img = cap.read()
height, width, _ = img.shape
blob = cv2.dnn.blobFromImage(img, 1/255, (416, 416), (0,0,0), swapRB=True, crop=False)
net.setInput(blob)
output_layers_names = net.getUnconnectedOutLayersNames()
layerOutputs = net.forward(output_layers_names)
boxes = []
confidences = []
class_ids = []
for output in layerOutputs:
for detection in output:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.2:
center_x = int(detection[0]*width)
center_y = int(detection[1]*height)
w = int(detection[2]*width)
h = int(detection[3]*height)
x = int(center_x - w/2)
y = int(center_y - h/2)
boxes.append([x, y, w, h])
confidences.append((float(confidence)))
class_ids.append(class_id)
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.2, 0.4)
if len(indexes)>0:
for i in indexes.flatten():
x, y, w, h = boxes[i]
label = str(classes[class_ids[i]])
confidence = str(round(confidences[i],2))
color = colors[i]
cv2.rectangle(img, (x,y), (x+w, y+h), color, 2)
cv2.putText(img, label + " " + confidence, (x, y+20), font, 2, (255,255,255), 2)
engine = pyttsx3.init()
engine.say(label)
engine.runAndWait()
cv2.imshow('Image', img)
key = cv2.waitKey(1)
if key==27:
break
cap.release()
cv2.destroyAllWindows()