I have a pure function that takes 18 arguments process them and returns an answer. Inside this function I call many other pure functions and those functions call other pure functions within them as deep as 6 levels.
This way of composition is cumbersome to test as the top level functions,in addition to their logic,have to gather parameters for inner functions.
# Minimal conceptual example
main_function(a, b, c, d, e) = begin
x = pure_function_1(a, b, d)
y = pure_function_2(a, c, e, x)
z = pure_function_3(b, c, y, x)
answer = pure_function_4(x,y,z)
return answer
end
# real example
calculate_time_dependant_losses(
Ap,
u,
Ac,
e,
Ic,
Ep,
Ecm_t,
fck,
RH,
T,
cementClass::Char,
ρ_1000,
σ_p_start,
f_pk,
t0,
ts,
t_start,
t_end,
) = begin
μ = σ_p_start / f_pk
fcm = fck + 8
Fr = σ_p_start * Ap
_σ_pb = σ_pb(Fr, Ac, e, Ic)
_ϵ_cs_t_start_t_end = ϵ_cs_ti_tj(ts, t_start, t_end, Ac, u, fck, RH, cementClass)
_ϕ_t0_t_start_t_end = ϕ_t0_ti_tj(RH, fcm, Ac, u, T, cementClass, t0, t_start, t_end)
_Δσ_pr_t_start_t_end =
Δσ_pr(σ_p_start, ρ_1000, t_end, μ) - Δσ_pr(σ_p_start, ρ_1000, t_start, μ)
denominator =
1 +
(1 + 0.8 * _ϕ_t0_t_start_t_end) * (1 + (Ac * e^2) / Ic) * ((Ep * Ap) / (Ecm_t * Ac))
shrinkageLoss = (_ϵ_cs_t_start_t_end * Ep) / denominator
relaxationLoss = (0.8 * _Δσ_pr_t_start_t_end) / denominator
creepLoss = (Ep * _ϕ_t0_t_start_t_end * _σ_pb) / Ecm_t / denominator
return shrinkageLoss + relaxationLoss + creepLoss
end
I see examples of functional composition (dot chaining,pipe operator etc) with single argument functions.
Is it practical to compose the above function using functional programming?If yes, how?