Sorry this is crossposting from https://stats.stackexchange.com/questions/593717/nlme-regression-with-weights-syntax-in-r, but I thought it might be more appropriate to post it here.
I am trying to fit a power curve to model some observations in an nlme
. However, I know some observations to be less reliable than others (reliability of each OBSID
reflected in the WEIV
in the dummy data), relatively independent of variance, and I quantified this beforehand and wish to include it as weights in my model. Moreover, I know a part of my variance is correlated with my independent variable so I cannot use directly the variance as weights.
This is my model:
coeffs_start = lm(log(DEPV)~log(INDV), filter(testdummy10,DEPV!=0))$coefficients
nlme_fit <- nlme(DEPV ~ a*INDV^b,
data = testdummy10,
fixed=a+b~ 1,
random = a~ 1,
groups = ~ PARTID,
start = c(a=exp(coeffs_start[1]), b=coeffs_start[2]),
verbose = F,
method="REML",
weights=varFixed(~WEIV))
This is some sample dummy data (I know it is not a great fit but it's fake data anyway) : https://github.com/FlorianLeprevost/dummydata/blob/main/testdummy10.csv
This runs well without the "weights" argument, but when I add it I get this error and I am not sure why because I believe it is the correct syntax:
Error in recalc.varFunc(object[[i]], conLin) :
dims [product 52] do not match the length of object [220]
In addition: Warning message:
In conLin$Xy * varWeights(object) :
longer object length is not a multiple of shorter object length
Thanks in advance!