I am somewhat familiar with lme4
, but not with the nlme
package, and I struggling to fit the mixed-effects that I desire.
I ran the following model with NLS. (Comments about the starting values are welcome too)
m3 <- nls(s ~ f0 + f1 * 2^(-MINUTES / K),
data = dat ,
start = list(f0 = 117, f1 = 16, K = 2.5))
summary(m3)
Q1 - What's the code to run the previous model with nlme, but with a random intercept for "ID"?
I tried
m1 <- nlme(s ~ f0 + f1 * 2^(-MINUTES / K),
data = dat ,
fixed = f0 + f1 + MINUTES + K ~ 1,
random = ID ~ 1 ,
start = list(f0 = 117, f1 = 16, K = 2.5))
But gave error
Error in getGroups.data.frame(dataMix, eval(parse(text = paste("~1", deparse(groups[[2]]), : invalid formula for groups
Q2 - Same as before, but also with MINUTES*group interaction?
dataframe:
dat <- structure(list(ID = c(1, 1, 1, 1, 1, 1, 1, 10, 10, 10, 10, 10,
10, 10, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12,
13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 15, 15,
15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17,
17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 2, 2, 2, 2, 2, 2, 2,
3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 40, 40, 40, 40, 40,
40, 40, 41, 41, 41, 41, 41, 41, 41, 42, 42, 42, 42, 42, 42, 42,
43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 45, 45,
45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 46, 49, 49, 49, 49,
49, 49, 49, 5, 5, 5, 5, 5, 5, 5, 52, 52, 52, 52, 52, 52, 52,
53, 53, 53, 53, 53, 53, 54, 54, 54, 54, 54, 54, 54, 55, 55, 55,
55, 55, 55, 55, 56, 56, 56, 56, 56, 56, 56, 57, 57, 57, 57, 57,
57, 57, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8,
8, 8, 8, 9, 9, 9, 9, 9, 9, 9), MINUTES = c(0, 5, 10, 15, 20,
25, 30, 0, 5, 10, 15, 20, 25, 30, 0, 5, 10, 15, 20, 25, 30, 0,
5, 10, 15, 20, 25, 30, 0, 5, 10, 15, 20, 25, 30, 0, 5, 10, 15,
20, 25, 30, 0, 5, 10, 15, 20, 25, 30, 0, 5, 10, 15, 20, 25, 30,
0, 5, 10, 15, 20, 25, 30, 0, 5, 10, 15, 20, 25, 30, 0, 5, 10,
15, 20, 25, 30, 0, 5, 10, 15, 20, 25, 30, 0, 5, 10, 15, 20, 25,
30, 0, 5, 10, 15, 20, 25, 30, 0, 5, 10, 15, 20, 25, 30, 0, 5,
10, 15, 20, 25, 30, 0, 5, 10, 15, 20, 25, 30, 0, 5, 10, 15, 20,
25, 30, 0, 5, 10, 15, 20, 25, 30, 0, 5, 10, 15, 20, 25, 30, 0,
5, 10, 15, 20, 25, 30, 0, 5, 10, 15, 20, 25, 30, 0, 5, 10, 15,
20, 25, 30, 5, 10, 15, 20, 25, 30, 0, 5, 10, 15, 20, 25, 30,
0, 5, 10, 15, 20, 25, 30, 0, 5, 10, 15, 20, 25, 30, 0, 5, 10,
15, 20, 25, 30, 0, 5, 10, 15, 20, 25, 30, 0, 5, 10, 15, 20, 25,
30, 0, 5, 10, 15, 20, 25, 30, 0, 5, 10, 15, 20, 25, 30), group = c("fff",
"fff", "fff", "fff", "fff", "fff", "fff", "fff",
"fff", "fff", "fff", "fff", "fff", "fff", "fff",
"fff", "fff", "fff", "fff", "fff", "fff", "fff",
"fff", "fff", "fff", "fff", "fff", "fff", "fff",
"fff", "fff", "fff", "fff", "fff", "fff", "fff",
"fff", "fff", "fff", "fff", "fff", "fff", "fff",
"fff", "fff", "fff", "fff", "fff", "fff", "fff",
"fff", "fff", "fff", "fff", "fff", "fff", "fff",
"fff", "fff", "fff", "fff", "fff", "fff", "fff",
"fff", "fff", "fff", "fff", "fff", "fff", "fff",
"fff", "fff", "fff", "fff", "fff", "fff", "fff",
"fff", "fff", "fff", "fff", "fff", "fff", "fff",
"fff", "fff", "fff", "fff", "fff", "fff", "control",
"control", "control", "control", "control", "control", "control",
"control", "control", "control", "control", "control", "control",
"control", "control", "control", "control", "control", "control",
"control", "control", "control", "control", "control", "control",
"control", "control", "control", "control", "control", "control",
"control", "control", "control", "control", "control", "control",
"control", "control", "control", "control", "control", "control",
"control", "control", "control", "control", "control", "control",
"control", "control", "control", "control", "control", "control",
"control", "fff", "fff", "fff", "fff", "fff",
"fff", "fff", "control", "control", "control", "control",
"control", "control", "control", "control", "control", "control",
"control", "control", "control", "control", "control", "control",
"control", "control", "control", "control", "control", "control",
"control", "control", "control", "control", "control", "control",
"control", "control", "control", "control", "control", "control",
"control", "control", "control", "control", "control", "control",
"control", "fff", "fff", "fff", "fff", "fff",
"fff", "fff", "fff", "fff", "fff", "fff", "fff",
"fff", "fff", "fff", "fff", "fff", "fff", "fff",
"fff", "fff", "fff", "fff", "fff", "fff", "fff",
"fff", "fff"), s = c(148, 151, 142, 147, 141, 142, 145,
131.5, 124, 114, 117, 119, 127, 119, 155.5, 110, 112, 111, 110,
108, 110, 149.5, 128, 117, 123, 125, 124, 130, 131, 117, 119,
125, 129, 125, 125, 147.5, 132, 117, 114, 116, 117, 115, 133,
125, 122, 125, 127, 124, 128, 106, 120, 115, 116, 119, 113, 115,
121, 97, 114, 99, 97, 102, 102, 133.5, 105, 104, 107, 103, 104,
108, 131, 118, 122, 121, 127, 126, 119, 133, 129, 130, 130, 129,
124, 126, 125, 117, 115, 116, 114, 122, 119, 137.5, 116, 111,
117, 111, 117, 108, 124, 124, 125, 123, 119, 121, 112, 136.5,
123, 126, 123, 119, 127, 112, 120.5, 104, 100, 107, 110, 106,
104, 116.5, 117, 116, 117, 120, 113, 121, 149, 134, 117, 115,
123, 117, 110, 146, 129, 131, 126, 127, 137, 128, 129.5, 105,
119, 125, 107, 120, 120, 113, 118, 114, 109, 109, 117, 112, 120,
110, 116, 107, 112, 111, 113, 108, 103, 105, 106, 104, 111, 123,
84, 84, 87, 88, 81, 84, 116, 97, 107, 99, 96, 94, 104, 133, 127,
118, 127, 123, 119, 121, 140.5, 116, 118, 116, 121, 121, 116,
143, 138, 137, 130, 129, 119, 133, 120, 108, 98, 103, 105, 100,
97, 130, 107, 113, 114, 111, 106, 108, 156, 137, 138, 134, 142,
135, 145)), row.names = c(8L, 9L, 10L, 11L, 12L, 13L, 14L, 22L,
23L, 24L, 25L, 26L, 27L, 28L, 36L, 37L, 38L, 39L, 40L, 41L, 42L,
43L, 44L, 45L, 46L, 47L, 48L, 49L, 50L, 51L, 52L, 53L, 54L, 55L,
56L, 64L, 65L, 66L, 67L, 68L, 69L, 70L, 78L, 79L, 80L, 81L, 82L,
83L, 84L, 85L, 86L, 87L, 88L, 89L, 90L, 91L, 99L, 100L, 101L,
102L, 103L, 104L, 105L, 106L, 107L, 108L, 109L, 110L, 111L, 112L,
120L, 121L, 122L, 123L, 124L, 125L, 126L, 134L, 135L, 136L, 137L,
138L, 139L, 140L, 148L, 149L, 150L, 151L, 152L, 153L, 154L, 155L,
156L, 157L, 158L, 159L, 160L, 161L, 162L, 163L, 164L, 165L, 166L,
167L, 168L, 169L, 170L, 171L, 172L, 173L, 174L, 175L, 176L, 177L,
178L, 179L, 180L, 181L, 182L, 183L, 184L, 185L, 186L, 187L, 188L,
189L, 190L, 191L, 192L, 193L, 194L, 195L, 196L, 197L, 198L, 199L,
200L, 201L, 202L, 203L, 204L, 205L, 206L, 207L, 208L, 209L, 210L,
218L, 219L, 220L, 221L, 222L, 223L, 224L, 225L, 226L, 227L, 228L,
229L, 230L, 231L, 232L, 233L, 234L, 235L, 236L, 237L, 238L, 239L,
240L, 241L, 242L, 243L, 244L, 245L, 246L, 247L, 248L, 249L, 250L,
251L, 252L, 253L, 254L, 255L, 256L, 257L, 258L, 259L, 260L, 261L,
262L, 263L, 264L, 265L, 273L, 274L, 275L, 276L, 277L, 278L, 279L,
287L, 288L, 289L, 290L, 291L, 292L, 293L, 294L, 295L, 296L, 297L,
298L, 299L, 300L, 308L, 309L, 310L, 311L, 312L, 313L, 314L), class = "data.frame")