I am using very basic code to convert a string into a long and into a double. The CAN library I am using requires a double as an input. I am attempting to send the device ID as a double to another device on the CAN network.
If I use an input string of that is 6 bytes long the long and double values are the same. If I add a 7th byte to the string the values are slightly different.
I do not think I am hitting a max value limit. This code is run with ceedling for an automated test. The same behaviour is seen when sending this data across my CAN communications. In main.c the issue is not observed.
The test is:
void test_can_hal_get_spn_id(void){
struct dbc_id_info ret;
memset(&ret, NULL_TERMINATOR, sizeof(struct dbc_id_info));
char expected_str[8] = "smg123";
char out_str[8];
memset(&out_str, 0, 8);
uint64_t long_val = 0;
double phys = 0.0;
memcpy(&long_val, expected_str, 8);
phys = long_val;
printf("long %ld \n", long_val);
printf("phys %f \n", phys);
uint64_t temp = (uint64_t)phys;
memcpy(&out_str, &temp, 8);
printf("%s\n", expected_str);
printf("%s\n", out_str);
}
With the input = "smg123"
[test_can_hal.c]
- "long 56290670243187 "
- "phys 56290670243187.000000 "
- "smg123"
- "smg123"
With the input "smg1234"
[test_can_hal.c]
- "long 14692989459197299 "
- "phys 14692989459197300.000000 "
- "smg1234"
- "tmg1234"
Is this error just due to how floats are handled and rounded? Is there a way to test for that? Am I doing something fundamentally wrong?
Representing the char array as a double without the intermediate long solved the issue. For clarity I am using DBCPPP. I am using it in C. I should clarify my CAN library comes from NXP, DBCPPP allows my application to read a DBC file and apply the data scales and factors to my raw CAN data. DBCPPP accepts doubles for all data being encoded and returns doubles for all data being decoded.