I want to implement boolean logic and dependent variables into a Mixed-Integer Linear Program with scipy.optimize.milp using a highs solver.
How do I set the actual matrices and vectors c, A_ub, b_ub, A_eq, b_eq to fit these exemplary Boolean operations of the exemplary MILP:
Boolean variables: a, b, c, d, e, f, g, h, i, j, k, l
Minimize 1a+1b+...+1l
such that:
a OR b
c AND d
e XOR f
g NAND h
i != j
k == l
a,b,...,l are set to integers via the integrality parameter:
integrality=np.repeat(3, 12+amount_of_helper_variables
)
And the lower and upper bounds are set to match boolean values 1 or 0 only:
Forall x in {a,b,...,l}: 0 <= x <= 1
I figured this CS post might help a lot as a general building guide, especially for solvers taking arbitrary formula input formats, but didn't get far myself with the conversion to standard matrix form until now.
I'm asking for a generalizable approach for conversion that basically can be used as a helper method for array creation and doesn't just apply to the stated problem but all boolean formula conversions for standard matrix form MILP using np.array
s to juggle the variables and helpers around.