I am using PySpark MLlib to fit a linear regression model without regularization. Here is a what I am using
def fit_linear_regression(data_frame, weights):
# elasticNetParam=1 and regParam >0.0 enforces a lasso for regularization
lr = LinearRegression(featuresCol = 'features', labelCol='label', solver="normal", weightCol=weights, maxIter=40)
lr_model = lr.fit(train_data)
return lr_model
And I have the foollowing func to print the model's summary for me.
### Print the linear model summary
def linear_model_summary(model):
import numpy as np
print ("##","--------------------------------------------------------------------------------")
coef = np.append(list(model.coefficients),model.intercept)
numeric_metadata = train_data.select("features").schema[0].metadata.get('ml_attr').get('attrs').get('numeric')
binary_metadata = train_data.select("features").schema[0].metadata.get('ml_attr').get('attrs').get('binary')
merge_list = numeric_metadata + binary_metadata
Summary=model.summary
print ("{:<35} {:<8} {:<8} {:<8} {:<8}".format("Feature", "Estimate", "Std.Error", "t-Values", "P-value"))
for i in range(model.numFeatures):
if i < len(Summary.pValues)-1:
feature_name = merge_list[i]['name']
else:
feature_name = 'Intercept'
print ("{:<35} {:<8.6f} {:<8.4f} {:<8.3f} {:<8.4f}".format(feature_name, coef[i], Summary.coefficientStandardErrors[i],
Summary.tValues[i], Summary.pValues[i]))
print ("##","--------------------------------------------------------------------------------")
However, I get the following error:
An error was encountered:
An error occurred while calling o535.pValues.
: java.lang.UnsupportedOperationException: No p-value available for this LinearRegressionModel
at org.apache.spark.ml.regression.LinearRegressionSummary.pValues$lzycompute(LinearRegression.scala:1072)
at org.apache.spark.ml.regression.LinearRegressionSummary.pValues(LinearRegression.scala:1069)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:750)
py4j.protocol.Py4JJavaError: An error occurred while calling o535.pValues.
There is a thread about this issue here,which suggests to set the solver to "normal"
which I did, and yet have the error. Is there anything I am doing wrong here?