I am trying to plot my data where it shows my predicted values superimposed with the actual data values. It does the job but the bar that represents the y value become ridiculously small and uninterpretable and the x-axis labels only show at the bottom of the last graph.
Bit of background- the class ids are essentially subplots of different graphs with different actual and predicted values. enter image description here
g = sns.catplot(data=plt_df,
y='Outcome',
x='DT',
kind='bar',
ci=None,
hue='Outcome_Type',
row='CLASS_ID',
palette=sns.color_palette(['red', 'blue']),
height = 10,
aspect = 3.5)
g.fig.subplots_adjust(hspace=1)
fig, ax = plt.subplots(figsize=(20, 9))
g.fig.suptitle("Distribution Plot Comparing Actual and Predicted Visits given caliberated Betas - " + describe_plot)
g.set_xlabels('Drive Time (Mins')
g.set_ylabels('Visits Percentage')
plt.xticks(rotation= 90)
plt.show()