Your data and formula look suspiciously like resonant (or anomalous) X-ray diffraction data, with measurements of scattered intensity going across the Zn K-edge. Although you do not say this, the discussion here will assume that. You say you have 1800 measurements, presumably as a function of X-ray energy in eV. The resonant scattering factors (f1, f2) you show seem to be idealized and possibly "typical", and perhaps not specifically for the Zn K-edge -- at the very least the energy scale shown is not the same as your data.
You will want to treat the data and model the intensity as a function of X-ray energy. And you will want realistic values for f1
and f2
for the element of interest, and at the actual energy points for your data. I recommend using xraydb
(full disclosure: I am the lead author) [pip install xraydb
], so that you can do
import numpy as np
import xraydb
#edata, idata = function_to_extract_your_data()
# or perhaps testing with
edata = np.linspace(9500, 10500, 501)
f1 = xraydb.f1_chantler('Zn', edata)
f2 = xraydb.f2_chantler('Zn', edata)
As written, your intensity function does not directly depend on energy, though it might at a later date, say to make that offset be linear in energy, not just a constant. You might write a function like:
def intensity(en, phi, beta, scale=1, slope=0, offset=0, f1=-1, f2=1):
costerm = np.cos(phi) + beta*f1
sinterm = np.sin(phi) + beta*f2
return scale * (costerm**2 + sinterm**2) + slope*en + offset
with that you can start just trying out some values to get a feel for the function and how it compares to your data:
import matplotlib.pyplot as plt
beta = 0.025 # Wild Guess!
for phi in np.pi*np.arange(20)/10:
plt.plot(edata, intensity(edata, phi, beta, f1=f1, f2=f2), label='%.1f'%phi)
plt.legend()
plt.show()
It kind of looks like your value for phi
would be around 5.5 to 6 (or -0.8 to -0.3). You could also try different values of beta
and plot that with your actual data.
With that model for intensity and a feel for what the range of parameters is, you could then try to fit your data. To do that, I would recommend using lmfit
(full disclosure: I am the lead author) [pip install lmfit
], where you can create a model from your intensity model function - this will use the names of the function arguments to name the fitting parameters.
from lmfit import Model
imodel = Model(intensity, independent_vars=['en', 'f1', 'f2'])
params = imodel.make_params(scale=1, offset=0, slope=0, beta=0.1, phi=5.5)
That independent_vars
will tell Model
to not make fitting Parameters for the function arguments f1
and f2
and to expect them to be passed into any evaluation or fit. The other function arguments (scale
, phi
, etc) will be expected to become fitting variables. You do have to create a "Parameters" object and must give initial values for all parameters. You can put bounds on these or fix them so they are not altered in the fit, as with
params['scale'].min = 0 # force scale to be positive
params['slope'].vary = False # slope will be fixed at 0.
You can then evaluate the model with
init_value = imodel.eval(params, en=edata, f1=f1, f2=f2)
And then eventually do a fit with
result = imodel.fit(idata, params, en=edata, f1=f1, f2=f2)
print(result.fit_report())
plt.plot(edata, idata, label='data')
plt.plot(edata, init_value, label='initial fit')
plt.plot(edata, result.best_fit, label='best fit')
plt.legend()
plt.show()
Finally, for analysis of X-ray resonant scattering be sure to consider including absorption corrections in that intensity calculation. As you go across the Zn K edge, the absorption depth of the sample may change dramatically if the Zn concentration is high.