Remain all your works and make senses that create labels without local dictionary or quick search from single line string. All remains you don't need to review forcefully handling continue.
I try to make it without creating a tokenizer when flat mapping and labels create from separated sources and single line string the song lyrics.
Sample: This way is easy for you not to have quick words mapping you can insert manually, see from the sourcecodes you need to filled the number of quick words search.
import os
from os.path import exists
import tensorflow as tf
import tensorflow_text as tft
import matplotlib.pyplot as plt
import gensim
from gensim.models import Word2Vec
from gensim.utils import simple_preprocess
from gensim.models.keyedvectors import KeyedVectors
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]
None
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
physical_devices = tf.config.experimental.list_physical_devices('GPU')
assert len(physical_devices) > 0, "Not enough GPU hardware devices available"
config = tf.config.experimental.set_memory_growth(physical_devices[0], True)
print(physical_devices)
print(config)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
: Variables
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
input_word = tf.constant(' \'Cause it\'s easy as an ice cream sundae Slipping outta your hand into the dirt Easy as an ice cream sundae Every dancer gets a little hurt Easy as an ice cream sundae Slipping outta your hand into the dirt Easy as an ice cream sundae Every dancer gets a little hurt Easy as an ice cream sundae Oh, easy as an ice cream sundae ')
dataset = tf.data.Dataset.from_tensors( tf.strings.bytes_split(input_word) )
window_size = 6
dataset = dataset.map( lambda x: tft.sliding_window(x, width=window_size, axis=0) ).flat_map(tf.data.Dataset.from_tensor_slices)
dataset = dataset.batch(1)
list_word = []
label = []
vocab = [ "a", "b", "c", "d", "e", "f", "g", "h", "I", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z", "_" ]
vocab_hot = [ "ice" ]
layer = tf.keras.layers.StringLookup(vocabulary=vocab)
layer_hot = tf.keras.layers.StringLookup(vocabulary=vocab_hot)
for example in dataset.take(200):
sequences_mapping_string = layer(example[0])
sequences_mapping_string = tf.constant( sequences_mapping_string, shape=(1, 6) )
list_word.append(sequences_mapping_string.numpy())
sequences_mapping_string = tf.reduce_sum(layer_hot( example[0][0] + example[0][1] + example[0][2] ))
sequences_mapping_string = tf.constant( sequences_mapping_string, shape=(1, 1) )
label.append(sequences_mapping_string.numpy())
list_word = tf.constant(list_word, shape=(200, 1, 6, 1), dtype=tf.int64)
label = tf.constant(label, shape=(200, 1, 1, 1), dtype=tf.int64)
dataset = tf.data.Dataset.from_tensor_slices((list_word, label))
checkpoint_path = "F:\\models\\checkpoint\\" + os.path.basename(__file__).split('.')[0] + "\\TF_DataSets_01.h5"
checkpoint_dir = os.path.dirname(checkpoint_path)
if not exists(checkpoint_dir) :
os.mkdir(checkpoint_dir)
print("Create directory: " + checkpoint_dir)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
: Class / Definition
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
class MyLSTMLayer( tf.keras.layers.LSTM ):
def __init__(self, units, return_sequences, return_state):
super(MyLSTMLayer, self).__init__( units, return_sequences=True, return_state=False )
self.num_units = units
def build(self, input_shape):
self.kernel = self.add_weight("kernel",
shape=[int(input_shape[-1]),
self.num_units])
def call(self, inputs):
return tf.matmul(inputs, self.kernel)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
: Callback
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
class custom_callback(tf.keras.callbacks.Callback):
def on_epoch_end(self, epoch, logs={}):
if( logs['accuracy'] >= 0.97 ):
self.model.stop_training = True
custom_callback = custom_callback()
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
: Model Initialize
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
mycustomlayer = MyLSTMLayer( 64, True, False )
mycustomlayer_2 = MyLSTMLayer( 16, True, False )
model = tf.keras.models.Sequential([
tf.keras.layers.InputLayer(input_shape=(6, 1)),
tf.keras.layers.Embedding(1000, 128, input_length=1),
tf.keras.layers.Reshape(( 6, 128 )),
tf.keras.layers.SpatialDropout1D( rate = 0.4 ),
tf.keras.layers.Conv1D(32, 6, activation="relu"),
tf.keras.layers.MaxPooling1D(strides=1, pool_size=1),
### LSTM
mycustomlayer,
tf.keras.layers.Reshape(( 1, 1, 64 )),
tf.keras.layers.UpSampling2D( size=(4, 4), data_format=None, interpolation='nearest' ),
tf.keras.layers.Conv1D(16, 3, activation="relu"),
tf.keras.layers.Reshape(( 8, 16 )),
tf.keras.layers.MaxPooling1D(),
tf.keras.layers.GlobalMaxPooling1D(),
### LSTM
tf.keras.layers.Reshape(( 1, 16 )),
mycustomlayer_2,
tf.keras.layers.Dropout(0.3),
tf.keras.layers.Dense(128, activation="relu"),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(4),
], name="MyModelClassification")
model.build()
model.summary()
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
: Optimizer
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
optimizer = tf.keras.optimizers.SGD(
learning_rate=0.000001,
momentum=0.5,
nesterov=True,
name='SGD',
)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
: Loss Fn
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
lossfn = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=False,
reduction=tf.keras.losses.Reduction.AUTO,
name='sparse_categorical_crossentropy'
)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
: Model Summary
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
model.compile(optimizer=optimizer, loss=lossfn, metrics=['accuracy'])
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
: FileWriter
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
if exists(checkpoint_path) :
model.load_weights(checkpoint_path)
print("model load: " + checkpoint_path)
input("Press Any Key!")
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
: Training
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
history = model.fit(dataset, batch_size=100, epochs=3, callbacks=[custom_callback] )
model.save_weights(checkpoint_path)
Output:
Model: "MyModelClassification"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
embedding (Embedding) (None, 6, 1, 128) 128000
reshape (Reshape) (None, 6, 128) 0
spatial_dropout1d (SpatialD (None, 6, 128) 0
ropout1D)
conv1d (Conv1D) (None, 1, 32) 24608
max_pooling1d (MaxPooling1D (None, 1, 32) 0
)
my_lstm_layer (MyLSTMLayer) (None, 1, 64) 2048
reshape_1 (Reshape) (None, 1, 1, 64) 0
up_sampling2d (UpSampling2D (None, 4, 4, 64) 0
)
conv1d_1 (Conv1D) (None, 4, 2, 16) 3088
reshape_2 (Reshape) (None, 8, 16) 0
max_pooling1d_1 (MaxPooling (None, 4, 16) 0
1D)
global_max_pooling1d (Globa (None, 16) 0
lMaxPooling1D)
reshape_3 (Reshape) (None, 1, 16) 0
my_lstm_layer_1 (MyLSTMLaye (None, 1, 16) 256
r)
dropout (Dropout) (None, 1, 16) 0
dense (Dense) (None, 1, 128) 2176
flatten (Flatten) (None, 128) 0
dense_1 (Dense) (None, 4) 516
=================================================================
Total params: 160,692
Trainable params: 160,692
Non-trainable params: 0
_________________________________________________________________
Epoch 1/3
2022-10-14 16:33:44.261736: I tensorflow/stream_executor/cuda/cuda_dnn.cc:384] Loaded cuDNN version 8100
200/200 [==============================] - 3s 5ms/step - loss: 0.3487 - accuracy: 0.9000
Epoch 2/3
200/200 [==============================] - 1s 5ms/step - loss: 0.2064 - accuracy: 0.9850