0

I modified this repository to use hydra and add U-net model

https://github.com/kuangliu/pytorch-cifar

I run this:

python3 main.py --config-name=unet_train params.epoch_count=5

I got this error, but when I run resnet and vgg I have no problem

 File "/home/jnavarro/Documents/pytorch-cifar-master_003/main.py", line 135, in train
    loss = criterion(outputs, targets)
  File "/home/jnavarro/anaconda3/envs/hydra/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
    return forward_call(*input, **kwargs)
  File "/home/jnavarro/anaconda3/envs/hydra/lib/python3.10/site-packages/torch/nn/modules/loss.py", line 1164, in forward
    return F.cross_entropy(input, target, weight=self.weight,
  File "/home/jnavarro/anaconda3/envs/hydra/lib/python3.10/site-packages/torch/nn/functional.py", line 3014, in cross_entropy
    return torch._C._nn.cross_entropy_loss(input, target, weight, _Reduction.get_enum(reduction), ignore_index, label_smoothing)
RuntimeError: only batches of spatial targets supported (3D tensors) but got targets of size: : [50]

this is my yaml config file to use the U-net model (unet_train.yaml):

  model:
      _target_: models.unet.UNetX

    ...

      epoch_count: 2
     

this is my main.py

        import torch
    
        ...

        # instantiante model
        net = hydra.utils.instantiate(cfg.model)
        # net = VGG11()
        # net = ResNet34()
    
        ...

        # Training
        def train(epoch):
            print('\nEpoch: %d' % epoch)
            net.train()
            train_loss = 0
            correct = 0
            total = 0
            for batch_idx, (inputs, targets) in enumerate(trainloader):
                inputs, targets = inputs.to(device), targets.to(device)
                optimizer.zero_grad()
                outputs = net(inputs)
                loss = criterion(outputs, targets)
                loss.backward()
                optimizer.step()
    
                train_loss += loss.item()
                _, predicted = outputs.max(1)
                total += targets.size(0)
                correct += predicted.eq(targets).sum().item()
    
                progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
                            % (train_loss/(batch_idx+1), 100.*correct/total, correct, total))
    
    
      

This is the U-net model I'm instantiating, I got this from https://github.com/milesial/Pytorch-UNet/tree/master/unet

""" Parts of the U-Net model """

import torch
import torch.nn as nn
import torch.nn.functional as F


class DoubleConv(nn.Module):
    """(convolution => [BN] => ReLU) * 2"""

    def __init__(self, in_channels, out_channels, mid_channels=None):
        super().__init__()
        if not mid_channels:
            mid_channels = out_channels
        self.double_conv = nn.Sequential(
            nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(mid_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(inplace=True)
        )

    def forward(self, x):
        return self.double_conv(x)


class Down(nn.Module):
    """Downscaling with maxpool then double conv"""

    def __init__(self, in_channels, out_channels):
        super().__init__()
        self.maxpool_conv = nn.Sequential(
            nn.MaxPool2d(2),
            DoubleConv(in_channels, out_channels)
        )

    def forward(self, x):
        return self.maxpool_conv(x)


class Up(nn.Module):
    """Upscaling then double conv"""

    def __init__(self, in_channels, out_channels, bilinear=True):
        super().__init__()

        # if bilinear, use the normal convolutions to reduce the number of channels
        if bilinear:
            self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
            self.conv = DoubleConv(in_channels, out_channels, in_channels // 2)
        else:
            self.up = nn.ConvTranspose2d(in_channels, in_channels // 2, kernel_size=2, stride=2)
            self.conv = DoubleConv(in_channels, out_channels)

    def forward(self, x1, x2):
        x1 = self.up(x1)
        # input is CHW
        diffY = x2.size()[2] - x1.size()[2]
        diffX = x2.size()[3] - x1.size()[3]

        x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2,
                        diffY // 2, diffY - diffY // 2])
        # if you have padding issues, see
        # https://github.com/HaiyongJiang/U-Net-Pytorch-Unstructured-Buggy/commit/0e854509c2cea854e247a9c615f175f76fbb2e3a
        # https://github.com/xiaopeng-liao/Pytorch-UNet/commit/8ebac70e633bac59fc22bb5195e513d5832fb3bd
        x = torch.cat([x2, x1], dim=1)
        return self.conv(x)


class OutConv(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(OutConv, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)

    def forward(self, x):
        return self.conv(x)


class UNet(nn.Module):
    def __init__(self, n_channels, n_classes, bilinear=False):
        super(UNet, self).__init__()
        self.n_channels = n_channels
        self.n_classes = n_classes
        self.bilinear = bilinear

        self.inc = DoubleConv(n_channels, 64)
        self.down1 = Down(64, 128)
        self.down2 = Down(128, 256)
        self.down3 = Down(256, 512)
        factor = 2 if bilinear else 1
        self.down4 = Down(512, 1024 // factor)
        self.up1 = Up(1024, 512 // factor, bilinear)
        self.up2 = Up(512, 256 // factor, bilinear)
        self.up3 = Up(256, 128 // factor, bilinear)
        self.up4 = Up(128, 64, bilinear)
        self.outc = OutConv(64, n_classes)

    def forward(self, x):
        x1 = self.inc(x)
        x2 = self.down1(x1)
        x3 = self.down2(x2)
        x4 = self.down3(x3)
        x5 = self.down4(x4)
        x = self.up1(x5, x4)
        x = self.up2(x, x3)
        x = self.up3(x, x2)
        x = self.up4(x, x1)
        logits = self.outc(x)
        return logits

def UNetX():
    return UNet(n_channels=3, n_classes=2, bilinear=False)

Can you help me please I'm new in the machine-learning field

Jasha
  • 5,507
  • 2
  • 33
  • 44
  • The `RuntimeError` you're seeing is being raised by pytorch. The call `loss = criterion(outputs, targets)` in your `main.py` file is the source of the error. – Jasha Oct 20 '22 at 00:58

0 Answers0