I'm working on a machine learning application for reading data from fuel pumps, so far I've gone ahead and created a pretty robust YOLOv5 Object Detection Model that can detect the regions that I want fairly accurately. But there is a problem, at certain times of the day there are reflections on the digital screen and I'm unable to use OpenCV pre-process it so that I can extract the numbers from the display.
Check this Video to Understand (YOLOv5 Detection)
https://www.youtube.com/watch?v=3XjZ6Nw70j8
Minimum Reproduceable Example
Cars come and go and their reflection makes it really difficult to differentiate between the reigons for digital-7 font that is used in these displays, you can check out the following repository to understand what I want as s result https://github.com/arturaugusto/display_ocr
Other Solutions I'm Open to:
Since, this application is going to run 24/7 how should I deal with different times, perhaps create a database of HSV ranges to extract at different times.
Use a polarizing lens would it help in removing the reflections (any user's who have had previous experiences in deploying them).
Edit: I added the correct video ...