I have a dataset and the dataset normalized to the maximum value (values between [0,1] and I try to fit gamma distribution. I am using fitdistrplus and I am estimating the parameters of the distribution while I get the loglikelihood values and AIC and BIC. Using my data the loglikelihood is negative and when my data is normalized is positive. Can you tell me why? Also, the shape parameter seem to be similar while the rate it is not. Any comment on that? Thank you
data <- c(130, 200, 830, 380, 680, 260, 280, 219, 330, 77, 360, 170, 240, 110, 170)
fit_gammaB <- fitdist(data, "gamma")
> summary(fit_gammaB)
Fitting of the distribution ' gamma ' by maximum likelihood
Parameters :
estimate Std. Error
shape 1.784525060 0.571213823
rate 0.006316464 0.002271273
Loglikelihood: -98.38866 AIC: 200.7773 BIC: 202.1934
Correlation matrix:
shape rate
shape 1.0000000 0.8519429
rate 0.8519429 1.0000000
And when my data is normalized to the max value:
> fit_gammaB <- fitdist(data_norm, "gamma")
> summary(fit_gammaB)
Fitting of the distribution ' gamma ' by maximum likelihood
Parameters :
estimate Std. Error
shape 1.784173 0.600506
rate 5.241396 2.034361
Loglikelihood: 2.432731 AIC: -0.8654627 BIC: 0.5506377
Correlation matrix:
shape rate
shape 1.0000000 0.8671602
rate 0.8671602 1.0000000