The sklearn.mixture
object GaussianMixture
provides the framework to fit a GMM to provided data, but how can one add/remove components from a sklearn gmm object for further warm start?
Asked
Active
Viewed 39 times
0

pietro_molina
- 97
- 1
- 9
1 Answers
0
Given an np.array
X
:
X = np.array([[1, 2], [1, 4], [1, 0], [10, 2], [10, 4], [10, 0]])
One can easily fit a GMM to the data with the .fit()
method:
gm = GaussianMixture(n_components=2, random_state=1).fit(X)
To change a parameter (e.g. number of components), invoke the .set_param()
method, set the warm_start
value to True
, and change the desired parameter. One can then fit the gmm to the data again, but using the previous fitting as initialization:
gm.set_params(warm_start=True)

pietro_molina
- 97
- 1
- 9