The fixed point method is a great one to use for situations like this. Or at least the principles of transforming the equation into a compatible form can benefit standard solvers by providing a less ill-behaved form of the function.
You have an ill-defined equation in the form y - g(y)
where y = 1/sqrt(x)
. So let's get the inverse of g
(call it G
) so we can solve G(y) - G(g(y)) = G(y) - y
instead.
>>> g = e_2.subs(1/x**.5, y)
>>> d = Dummy()
>>> G = solve(g - d, y)[0].subs(d, y)
>>> nsolve(G - y, 6)
6.45497224367903
>>> solve(1/x**.5 - _, dict=True)
{x: 0.024}
The process of rearranging an equation f(x)
into form x - g(x)
could probably use a built-in method in SymPy, but it's not too hard to do this by replacing each x
with a dummy variable, solving for it, and then replacing the dummy symbols with x
again. Different g
will be more favorable for finding different roots as can be seen in the example below where the purple dashed line is good for finding the root near 1 while the solid blue is better near the smaller root.

Here is a possibility for a "fixed point form" function:
def fixedpoint_Eqs(eq, x=None):
"""rearrange to give eq in form x = g(x)"""
f = eq.free_symbols
fp = []
if x is None:
assert len(f) == 1, 'must specify x in this case'
x = list(f)[0]
Xeq = eq.replace(lambda _:_ == x, lambda _:Dummy())
X = Xeq.free_symbols - f
reps = {xi: x for xi in X}
for xi in X:
try:
g = solve(Xeq, xi, dict=True)
if len(g) != 1:
raise NotImplementedError
fp.append(Eq(x, g[0][xi].xreplace(reps)))
except NotImplementedError:
pass
return fp
>>> fixedpoint_Eqs(x+exp(x)+1/x-5)
Eq(x, -1/(x + exp(x) - 5))
Eq(x, -exp(x) + 5 - 1/x)
Eq(x, log(-x + 5 - 1/x))