I am reading delta tables from my databricks workspace as DF and then I am trying to write this DF into Azure Synapse Dedicated Sql Pool, but I am getting error like:-
The input is not a valid Base-64 string as it contains a non-base 64 character, more than two padding characters, or an illegal character among the padding characters. [ErrorCode = 110813] [SQLState = S0001]
Below is my code:-
from pyspark.sql import *
from pyspark.sql.types import *
from pyspark.sql.functions import *
dwDatabase = "sqldbpool"
dwServer = "synapseworkspace.database.windows.net"
dwUser = "user"
dwPass = "pass"
dwJdbcPort = "1433"
dwJdbcExtraOptions = "encrypt=true;trustServerCertificate=true;hostNameInCertificate=*.database.windows.net;loginTimeout=30;"
sqlDwUrl = "jdbc:sqlserver://" + dwServer + ":" + dwJdbcPort + ";database=" + dwDatabase + ";user=" + dwUser+";password=" + dwPass + ";$dwJdbcExtraOptions"
sqlDwUrlSmall = "jdbc:sqlserver://" + dwServer + ":" + dwJdbcPort + ";database=" + dwDatabase + ";user=" + dwUser+";password=" + dwPass
spark.conf.set(
"spark.sql.parquet.writeLegacyFormat",
"true")
df = StarSchemaDict['Product_Dim'] # The value of the dictionary is a DF.
(df
.write
.format("com.databricks.spark.sqldw")
.option("url", sqlDwUrlSmall)
.option("dbtable", "Product_Dim")
.option( "forward_spark_azure_storage_credentials","True")
.option("tempdir", adls)
.mode("overwrite")
.save())
The data is getting copied to my adls staging area but after that it is throwing an error
Py4JJavaError: An error occurred while calling o1509.save.
: com.databricks.spark.sqldw.SqlDWSideException: Azure Synapse Analytics failed to execute the JDBC query produced by the connector.
Underlying SQLException(s):
- com.microsoft.sqlserver.jdbc.SQLServerException: The input is not a valid Base-64 string as it contains a non-base 64 character, more than two padding characters, or an illegal character among the padding characters. [ErrorCode = 110813] [SQLState = S0001]
The complete error is
Py4JJavaError: An error occurred while calling o1509.save.
: com.databricks.spark.sqldw.SqlDWSideException: Azure Synapse Analytics failed to execute the JDBC query produced by the connector.
Underlying SQLException(s):
- com.microsoft.sqlserver.jdbc.SQLServerException: The input is not a valid Base-64 string as it contains a non-base 64 character, more than two padding characters, or an illegal character among the padding characters. [ErrorCode = 110813] [SQLState = S0001]
at com.databricks.spark.sqldw.Utils$.wrapExceptions(Utils.scala:723)
at com.databricks.spark.sqldw.DefaultSource.createRelation(DefaultSource.scala:89)
at org.apache.spark.sql.execution.datasources.SaveIntoDataSourceCommand.run(SaveIntoDataSourceCommand.scala:47)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult$lzycompute(commands.scala:80)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult(commands.scala:78)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.executeCollect(commands.scala:89)
at org.apache.spark.sql.execution.QueryExecution$$anonfun$$nestedInanonfun$eagerlyExecuteCommands$1$1.$anonfun$applyOrElse$1(QueryExecution.scala:160)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withCustomExecutionEnv$8(SQLExecution.scala:239)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:386)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withCustomExecutionEnv$1(SQLExecution.scala:186)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:968)
at org.apache.spark.sql.execution.SQLExecution$.withCustomExecutionEnv(SQLExecution.scala:141)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:336)
at org.apache.spark.sql.execution.QueryExecution$$anonfun$$nestedInanonfun$eagerlyExecuteCommands$1$1.applyOrElse(QueryExecution.scala:160)
at org.apache.spark.sql.execution.QueryExecution$$anonfun$$nestedInanonfun$eagerlyExecuteCommands$1$1.applyOrElse(QueryExecution.scala:156)
at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformDownWithPruning$1(TreeNode.scala:575)
at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:167)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDownWithPruning(TreeNode.scala:575)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.org$apache$spark$sql$catalyst$plans$logical$AnalysisHelper$$super$transformDownWithPruning(LogicalPlan.scala:30)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning(AnalysisHelper.scala:268)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning$(AnalysisHelper.scala:264)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:30)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:30)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:551)
at org.apache.spark.sql.execution.QueryExecution.$anonfun$eagerlyExecuteCommands$1(QueryExecution.scala:156)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.allowInvokingTransformsInAnalyzer(AnalysisHelper.scala:324)
at org.apache.spark.sql.execution.QueryExecution.eagerlyExecuteCommands(QueryExecution.scala:156)
at org.apache.spark.sql.execution.QueryExecution.commandExecuted$lzycompute(QueryExecution.scala:141)
at org.apache.spark.sql.execution.QueryExecution.commandExecuted(QueryExecution.scala:132)
at org.apache.spark.sql.execution.QueryExecution.assertCommandExecuted(QueryExecution.scala:186)
at org.apache.spark.sql.DataFrameWriter.runCommand(DataFrameWriter.scala:959)
at org.apache.spark.sql.DataFrameWriter.saveToV1Source(DataFrameWriter.scala:427)
at org.apache.spark.sql.DataFrameWriter.saveInternal(DataFrameWriter.scala:396)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:258)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:380)
at py4j.Gateway.invoke(Gateway.java:295)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:251)
at java.lang.Thread.run(Thread.java:748)
Caused by: java.sql.SQLException: Exception thrown in awaitResult:
at com.databricks.spark.sqldw.JDBCWrapper.executeInterruptibly(SqlDWJDBCWrapper.scala:137)
at com.databricks.spark.sqldw.JDBCWrapper.$anonfun$executeInterruptibly$1(SqlDWJDBCWrapper.scala:115)
at com.databricks.spark.sqldw.JDBCWrapper.$anonfun$executeInterruptibly$1$adapted(SqlDWJDBCWrapper.scala:115)
at com.databricks.spark.sqldw.JDBCWrapper.withPreparedStatement(SqlDWJDBCWrapper.scala:357)
at com.databricks.spark.sqldw.JDBCWrapper.executeInterruptibly(SqlDWJDBCWrapper.scala:115)
at com.databricks.spark.sqldw.SqlDwWriter.$anonfun$saveToSqlDW$6(SqlDwWriter.scala:247)
at scala.runtime.java8.JFunction0$mcZ$sp.apply(JFunction0$mcZ$sp.java:23)
at com.databricks.backend.daemon.driver.ProgressReporter$.withStatusCode(ProgressReporter.scala:377)
at com.databricks.backend.daemon.driver.ProgressReporter$.withStatusCode(ProgressReporter.scala:363)
at com.databricks.spark.util.SparkDatabricksProgressReporter$.withStatusCode(ProgressReporter.scala:34)
at com.databricks.spark.sqldw.SqlDwWriter.$anonfun$saveToSqlDW$1(SqlDwWriter.scala:204)
at com.databricks.spark.sqldw.SqlDwWriter.$anonfun$saveToSqlDW$1$adapted(SqlDwWriter.scala:73)
at com.databricks.spark.sqldw.JDBCWrapper.withConnection(SqlDWJDBCWrapper.scala:335)
at com.databricks.spark.sqldw.SqlDwWriter.saveToSqlDW(SqlDwWriter.scala:73)
at com.databricks.spark.sqldw.DefaultSource.$anonfun$createRelation$3(DefaultSource.scala:122)
at com.databricks.spark.sqldw.Utils$.wrapExceptions(Utils.scala:692)
... 44 more
Caused by: com.microsoft.sqlserver.jdbc.SQLServerException: The input is not a valid Base-64 string as it contains a non-base 64 character, more than two padding characters, or an illegal character among the padding characters.
at com.microsoft.sqlserver.jdbc.SQLServerException.makeFromDatabaseError(SQLServerException.java:262)
at com.microsoft.sqlserver.jdbc.SQLServerStatement.getNextResult(SQLServerStatement.java:1632)
at com.microsoft.sqlserver.jdbc.SQLServerPreparedStatement.doExecutePreparedStatement(SQLServerPreparedStatement.java:602)
at com.microsoft.sqlserver.jdbc.SQLServerPreparedStatement$PrepStmtExecCmd.doExecute(SQLServerPreparedStatement.java:524)
at com.microsoft.sqlserver.jdbc.TDSCommand.execute(IOBuffer.java:7418)
at com.microsoft.sqlserver.jdbc.SQLServerConnection.executeCommand(SQLServerConnection.java:3272)
at com.microsoft.sqlserver.jdbc.SQLServerStatement.executeCommand(SQLServerStatement.java:247)
at com.microsoft.sqlserver.jdbc.SQLServerStatement.executeStatement(SQLServerStatement.java:222)
at com.microsoft.sqlserver.jdbc.SQLServerPreparedStatement.execute(SQLServerPreparedStatement.java:505)
at com.databricks.spark.sqldw.JDBCWrapper.$anonfun$executeInterruptibly$2(SqlDWJDBCWrapper.scala:115)
at com.databricks.spark.sqldw.JDBCWrapper.$anonfun$executeInterruptibly$2$adapted(SqlDWJDBCWrapper.scala:115)
at com.databricks.spark.sqldw.JDBCWrapper.$anonfun$executeInterruptibly$3(SqlDWJDBCWrapper.scala:129)
at scala.concurrent.Future$.$anonfun$apply$1(Future.scala:659)
at scala.util.Success.$anonfun$map$1(Try.scala:255)
at scala.util.Success.map(Try.scala:213)
at scala.concurrent.Future.$anonfun$map$1(Future.scala:292)
at scala.concurrent.impl.Promise.liftedTree1$1(Promise.scala:33)
at scala.concurrent.impl.Promise.$anonfun$transform$1(Promise.scala:33)
at scala.concurrent.impl.CallbackRunnable.run(Promise.scala:64)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
... 1 more