so i guess you are all fimilliar with a binary heap data structure if not.. Brilliant. org say
i.e. a binary tree which obeys the property that the root of any tree is greater than or equal to (or smaller than or equal to) all its children (heap property). The primary use of such a data structure is to implement a priority queue.
will one of the properties of a binary heap is that it must be filled from top to bottom (from root) and from right to left
I coded this algorithm to find the next available spot to insert the next number I add (I hard coded the first nodes so I can track more further down the tree
this search method is inspired by BFS(Breadth First Search) algorithm
note that in this code I only care about finding the next empty node without the need to keep the heap property
I tested the code but I don't think I tested it enough so if you spot problems, bugs or suggest any ideas, every comment is welcomed
def insert(self, data):
if self.root.data == None:
self.root.data = data
print('root', self.root.data)
else:
self.search()
def search(self):
print('search..L31')
queue = [self.root]
while queue:
curr = queue.pop(0)
print(curr.data)
if curr.right_child == None:
print('made it')
return
else:
queue.append(curr.left_child)
queue.append(curr.right_child)
h = Min_heap(10)
h.insert(2)
h.root.left_child = Node(3)
h.root.right_child = Node(5)
h.root.left_child.left_child = Node(8)
h.root.left_child.right_child = Node(7)
h.root.right_child.left_child = Node(9)
# The tree I am building...
# __2__
# / \
# 3 5
# / \ / \
# 8 7 9 ⨂
# ↑
# what am
# looking for
h.search()
there is another way to figuring this out which is basically translating the tree into an array/list using special formulas and then we just assume that the next data we want to insert is the last element in the previous array and then work back through the same formulas but I already know that algorithm and I thought why not trying to solve it as a graph soooo...