TL;DR
Judging by the structure, you've provided each Node
in your List
is the root of an N
-ary Tree data structure (I assume that there are no circles).
And in order to get the required data, we can utilize one of the classic tree-traversal algorithms. In case when the average depth is lower than the average width Depth first search algorithm would be more suitable because it would be more space-efficient, in the opposite situation it would be better to use Breadth first search. I'll go with DFS.
It's easier to come up with a recursive implementation, so I'll start with it. But it has no practical value in Java, hence we would proceed with a couple of improvements.
Streams + recursion
You can create a helper-method responsible for flattening the nodes which would be called from the stream.
List<Node> nodes = // initializing the list
long totalScore = nodes.stream()
.flatMap(node -> flatten(node).stream())
.filter(Node::isSelected)
.mapToLong(Node::getScore)
.sum();
Recursive auxiliary method:
public static List<Node> flatten(Node node) {
if (node.getSubNodes().isEmpty()) {
return List.of(node);
}
List<Node> result = new ArrayList<>();
result.add(node);
node.getSubNodes().forEach(n -> result.addAll(flatten(n)));
return result;
}
No recursion
To avoid StackOverflowError
method flatten()
can be implemented without recursion by polling and allocating new nodes on the stack (represented by an ArrayDeque
) iterativelly.
public static List<Node> flatten(Node node) {
List<Node> result = new ArrayList<>();
Deque<Node> stack = new ArrayDeque<>();
stack.add(node);
while (!stack.isEmpty()) {
Node current = stack.poll();
result.add(current);
current.getSubNodes().forEach(stack::push);
}
return result;
}
No recursion & No intermediate data allocation
Allocating intermediate data in the form of nodes which eventually would not be used is impractical.
Instead, we can make the auxiliary method to be responsible for calculating the total score produced by summarizing the score of each selected node in the tree of nodes.
For that we need to perform isSelected()
while traversing the tree.
List<Node> nodes = // initializing the list
long totalScore = nodes.stream()
.mapToLong(node -> getScore(node))
.sum();
public static long getScore(Node node) {
long total = 0;
Deque<Node> stack = new ArrayDeque<>();
stack.push(node);
while (!stack.isEmpty()) {
Node current = stack.poll();
if (current.isSelected()) total += current.getScore();
current.getSubNodes().forEach(stack::push);
}
return total;
}