I am trying to write a VGG19 neural network for single-channel images, where everything is essentially the same as in a three-channel network except for the input layer.
def model(self, inputShape=(64, 64, 1)):
inputLayer = Input(shape=inputShape)
After applying the Flatten layer to the convolution tensor I use the same dense layer parameters as in classic VGG19 but I get an error when compiling the model
ValueError: Shapes (None, 64, 64, 1) and (None, 1000) are incompatible
As far as I understand the number of neurons in dense layer should correspond to the dimensionality of the input data. That is 64x64 image, after applying the Flatten layer, the dense layer should receive a vector with 4096 neurons. As described in the classical model
layerSet = Flatten()(layerSet)
layerSet = Dense(4096, activation='relu')(layerSet)
layerSet = Dropout(0.5)(layerSet)
layerSet = Dense(4096, activation='relu')(layerSet)
layerSet = Dropout(0.5)(layerSet)
outputLayer = Dense(1000, activation='relu')(layerSet)
The last dense layer gets 1000 neurons, each corresponding to some recognizable class. In my case, I need a set of features for SRGAN, so I doubt that for my problem there is a need to use classification vector. Features derived from VGG19 model in association with features derived from discriminative model should be passed as output layer of generative-competitive model.
Next I give you the full code example where I give the model itself and the training method. I expect to eventually get the required features from the model
class VGG19DeepConvolutionNetwork:
__model = None
def __init__(self):
self.model()
def model(self, inputShape=(64, 64, 1)):
inputLayer = Input(shape=inputShape)
layerSet = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv1')(inputLayer)
layerSet = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv2')(layerSet)
layerSet = MaxPooling2D(strides=(2,2), padding='same')(layerSet)
layerSet = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv1')(layerSet)
layerSet = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv2')(layerSet)
layerSet = MaxPooling2D(strides=(2,2), padding='same')(layerSet)
layerSet = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv1')(layerSet)
layerSet = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv2')(layerSet)
layerSet = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv3')(layerSet)
layerSet = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv4')(layerSet)
layerSet = MaxPooling2D(strides=(2,2), padding='same')(layerSet)
layerSet = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv1')(layerSet)
layerSet = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv2')(layerSet)
layerSet = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv3')(layerSet)
layerSet = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv4')(layerSet)
layerSet = MaxPooling2D(strides=(2,2), padding='same')(layerSet)
layerSet = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv1')(layerSet)
layerSet = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv2')(layerSet)
layerSet = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv3')(layerSet)
layerSet = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv4')(layerSet)
layerSet = MaxPooling2D(strides=(2,2), padding='same')(layerSet)
layerSet = Flatten()(layerSet)
layerSet = Dense(4096, activation='relu')(layerSet)
layerSet = Dropout(0.5)(layerSet)
layerSet = Dense(4096, activation='relu')(layerSet)
layerSet = Dropout(0.5)(layerSet)
outputLayer = Dense(1000, activation='relu')(layerSet)
self.__model = Model(inputs=[inputLayer], outputs=[outputLayer])
self.__model.compile(optimizer='adam', loss='categorical_crossentropy')
print(self.__model.summary())
def train(self, imageDataPath:string='srgangImageData.h5', weightsPath:string='vgg19Weights.h5', sliceSize=32, epochsNumber=100):
if self.__model is None:
self.model((sliceSize, sliceSize, 1))
imageData = ImageDataProcessing()
sourceTrain, targetTrain, sourceTest, targetTest = imageData.readImageData(imageDataPath)
del imageData
print( 'train source', sourceTrain.shape )
print( 'train target', targetTrain.shape )
print( 'test source', sourceTest.shape )
print( 'test target', targetTest.shape )
checkpoint = ModelCheckpoint(weightsPath, verbose=1, save_best_only=True, save_weights_only=False, mode='min')
callbacks_list = [checkpoint]
history = self.__model.fit(sourceTrain, targetTrain, batch_size=128, steps_per_epoch=len(sourceTrain)//128, validation_data=(sourceTest, targetTest),
callbacks=callbacks_list, shuffle=True, epochs=epochsNumber, verbose=1)