With reference to Pandas groupby with categories with redundant nan
import pandas as pd
df = pd.DataFrame({"TEAM":[1,1,1,1,2,2,2], "ID":[1,1,2,2,8,4,5], "TYPE":["A","B","A","B","A","A","A"], "VALUE":[1,1,1,1,1,1,1]})
df["TYPE"] = df["TYPE"].astype("category")
df = df.groupby(["TEAM", "ID", "TYPE"]).sum()
VALUE
TEAM ID TYPE
1 1 A 1
B 1
2 A 1
B 1
4 A 0
B 0
5 A 0
B 0
8 A 0
B 0
2 1 A 0
B 0
2 A 0
B 0
4 A 1
B 0
5 A 1
B 0
8 A 1
B 0
Expected output
VALUE
TEAM ID TYPE
1 1 A 1
B 1
2 A 1
B 1
2 4 A 1
B 0
5 A 1
B 0
8 A 1
B 0
I tried to use astype("category")
for TYPE
. However it seems to output every cartesian product of every item in every group.