We are performing a beta mixed-effects regression analysis using glmmTMB package, as shown below:
mod = glmmTMB::glmmTMB(data = data,
formula = rating ~ par1 + par2 + par3 +
(1|subject)+(1|item),
family = glmmTMB::beta_family())
Next, we would like to run a model comparison — something similar to the ‘step’ function that is used for ‘lm’ objects. So far, we found the function ‘dredge’ from the MuMIn package which computes the fit of the nested models according to a criterion (e.g. BIC):
MuMIn::dredge(mod, rank = 'BIC', evaluate = T)
OUTPUT:
Model selection table
cnd((Int)) dsp((Int)) cnd(par1) cnd(par2) cnd(par3) df logLik BIC delta weight
2 1.341 + -0.4466 5 2648.524 -5258.3 0.00 0.950
6 1.341 + -0.4466 0.03311 6 2648.913 -5251.3 6.97 0.029
4 1.341 + -0.4468 -0.005058 6 2648.549 -5250.6 7.70 0.020
8 1.341 + -0.4470 -0.011140 0.03798 7 2649.025 -5243.8 14.49 0.001
1 1.321 + 4 2604.469 -5177.9 80.36 0.000
5 1.321 + 0.03116 5 2604.856 -5171.0 87.34 0.000
3 1.321 + -0.001771 5 2604.473 -5170.2 88.10 0.000
7 1.321 + -0.007266 0.03434 6 2604.909 -5163.3 94.98 0.000
However, we would like to know whether the difference in fit between these nested models is statistically significant. For lms with a normally distributed dependent variable, we would use anova, but here we are not sure if it is applicable to models with beta distribution or glmmTMB object.