I'm working trough the Wine Classification Challenge and I'm not getting the same summary when training the model and printing its params:
model = pipeline.fit(X_train, y_train)
print (model)
For some reason I get this summary of the model: what I get
Pipeline(steps=[('preprocessor',
ColumnTransformer(transformers=[('preprocess',
Pipeline(steps=[('scaler',
StandardScaler())]),
[0, 1, 2, 3, 4, 5, 6])])),
('regressor', LogisticRegression())])
How to get this more useful summary printed?: desired solution
Pipeline(memory=None,
steps=[('preprocessor',
ColumnTransformer(n_jobs=None, remainder='drop',
sparse_threshold=0.3,
transformer_weights=None,
transformers=[('preprocess',
Pipeline(memory=None,
steps=[('scaler',
StandardScaler(copy=True,
with_mean=True,
with_std=True))],
verbose=False),
[0, 1, 2, 3, 4, 5, 6])],
verbose=False)),
('regressor',
LogisticRegression(C=1.0, class_weight=None, dual=False,
fit_intercept=True, intercept_scaling=1,
l1_ratio=None, max_iter=100,
multi_class='auto', n_jobs=None,
penalty='l2', random_state=None,
solver='lbfgs', tol=0.0001, verbose=0,
warm_start=False))],
verbose=False)
I also don't need the full model.get_params(deep=True)
which prints a lot of stuff.