I am trying to do binary classification using transfer learning using Timm
In the process, I want to experiment with freezing/unfreezing different layers of different architectures but so far, I am able to freeze/unfreeze entire models only.
Can anyone help me in illustrating it with a couple of model architectures for the sake of heterogeneity of different architectures?
Below, I am ilustrating the entire freezing of couple of architectures using Timm - convnext and resnet but can anyone illustrate me with any different models but only using Timm(As it is more comprehensive than Pytorch model zoo)-
import timm
convnext = timm.create_model('convnext_tiny_in22k', pretrained=True,num_classes=2)
resnet = timm.create_model('resnet50d', pretrained=True,num_classes=2)