I am trying to fit experimental data to a set of 3 PDEs:
dX/dt = mumax.(S/(Ks+S)).(1-X/Xm).X
dS/dt = -1/Y_x/s * dX/dt - m_s.X - k_LD * dL/dt
dL/dt = -kl * L
I got error No. 6 of 'ftol':
"Error in chol.default(object$hessian) : the leading minor of order 6 is not positive definite"
"reason terminated: Relative error in the sum of squares is at most `ftol'."
I don't know if the problem lies in the models or the data.
Please find the code below. Thanks
library(deSolve)
library(ggplot2)
library(minpack.lm)
library(reshape2)
time <- c(0,2,4,5,6,7,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42)
X <- c(0.010044683, 0.011653262, 0.013306524, 0.014155496, 0.014959786,
0.015630027, 0.016434316, 0.018132261, 0.019651475, 0.021394102,
0.023002681, 0.024432529, 0.026085791, 0.027828418, 0.029347632,
0.031090259, 0.032698838, 0.034262735, 0.035915996, 0.037569258,
0.039311886, 0.040786416, 0.042350313, 0.04409294)
S <- c(0.585443495, 0.537584046, 0.505306743, 0.476368471, 0.464125356,
0.451882241, 0.441308642, 0.426283001, 0.403466287, 0.394005698,
0.37508452, 0.371188984, 0.353937322, 0.355050332, 0.33668566,
0.343920228, 0.328338082, 0.333346629, 0.319433998, 0.314425451,
0.309416904, 0.302182336, 0.294391263, 0.288269706)
L <- c(0.372443284, 0.370216418, 0.361865672, 0.362979104, 0.357968657,
0.359638806, 0.355741791, 0.345720896, 0.34961791, 0.334029851,
0.329019403, 0.334029851, 0.327349254, 0.322338806, 0.319555224,
0.315101493, 0.31398806, 0.305080597, 0.302297015, 0.297286567,
0.295059701, 0.289492537, 0.282255224, 0.27668806)
data <- data.frame(time,X,S,L)
attach(data)
Hybrid <- function(t,c,parms) {
k1 <- parms$k1 # mumax
k2 <- parms$k2 # Ks
k3 <- parms$k3 # Xm
k4 <- parms$k4 # Y_x/s
k5 <- parms$k5 # m_s
k6 <- parms$k6 # k_LD
k7 <- parms$k7 # k_l
r <- numeric(length(c))
r[1] <- k1 * (c["S"] / ( k2 + c["S"] )) * c["X"] * (1-c["X"]/k3) # r[1] = dX/dt = mumax.(S/(Ks+S)).(1-X/Xm).X
r[2] <- -1/k4 * r[1] - k5 * c["X"] - k6 * r[3] # r[2] = dS/dt = -1/Y_x/s * dX/dt - m_s.X - k_LD * dL/dt
r[3] <- -k7*c["L"] # dL/dt = -kl * L
return(list(r))
}
residuals <- function(parms){
cinit <- c( X = data[1,2], S = data[1,3], L = data[1,4] )
t <- sort(unique(c(seq(0, 42, 1), data$time)))
k1 <- parms[1]
k2 <- parms[2]
k3 <- parms[3]
k4 <- parms[4]
k5 <- parms[5]
k6 <- parms[6]
k7 <- parms[7]
out <- ode( y = cinit,
times = t,
func = Hybrid,
parms = list( k1 = k1, k2 = k2, k3 = k3, k4 = k4, k5 = k5, k6 = k6, k7 = k7) )
out_data <- data.frame(out)
out_data <- out_data[out_data$time %in% data$time,]
pred_data <- melt(out_data,id.var="time",variable.name="Substance",value.name="Conc")
exp_data <- melt(data,id.var="time",variable.name="Substance",value.name="Conc")
residuals <- pred_data$Conc-exp_data$Conc
return(residuals)
}
parms <- c( k1=0.8, # mumax
k2=1.2, # Ks
k3=0.06, # Xm
k4=0.05, # Y_x/s
k5=0.001,# m_s
k6=0.05, # k_LD
k7=0.003)# kl
fitval <- nls.lm(par=parms,fn=residuals)
summary(fitval)
fitval
parest=as.list(coef(fitval))
cinit <- c( X=data[1,2], S=data[1,3], L=data[1,4] )
t<-seq(0, 42, 1)
parms<-as.list(parest)
out<-ode(y=cinit,times=t,func=Hybrid,parms=parms)
out_data<-data.frame(out)
names(out_data)<-c("time","X_pred","S_pred","L_pred")
tmppred<-melt(out_data,id.var=c("time"),variable.name="Substance",value.name="Concentration")
tmpexp<-melt(data,id.var=c("time"),variable.name="Substance",value.name="Concentration")
p<-ggplot(data=tmppred,aes(x=time,y=Concentration,color=Substance,linetype=Substance))+geom_line()
print(p)
p<-p+geom_line(data=tmpexp,aes(x=time,y=Concentration,color=Substance,linetype=Substance))
p<-p+geom_point(data=tmpexp,aes(x=time,y=Concentration,color=Substance))
p<-p+scale_linetype_manual(values=c(0,1,0,1,0,1))
p<-p+scale_color_manual(values=rep(c("red","blue","purple"),each=2))+theme_bw()
print(p)