In the following dataframe:
country admin_1 admin_2 year season_name production area
A1 B1 C1 1991 Primary 43170 25980
A1 B1 C1 1990 Primary 45624 29820
A1 B1 C1 1989 Primary 56310 31284
A1 B1 C1 1988 Primary 33523 24832
A1 B1 C1 1987 Primary 49388 33479
A1 B1 C1 1986 Primary 36475 27425
A1 B1 C1 1985 Primary 32278 32046
A1 B1 C1 1984 Primary 52073 28929
A1 B1 C1 1983 Primary 51746 32855
A1 B1 C2 1991 Primary 32010 20010
A1 B1 C2 1990 Primary 52704 19520
A1 B1 C2 1989 Primary 65240 18640
A1 B1 C2 1988 Primary 11570 17800
A1 B1 C2 1987 Primary 51282 20350
A1 B1 C2 1986 Primary 25808 19816
A1 B1 C2 1985 Primary 16935 18817
A1 B2 C3 1987 Primary 51282 20350
A1 B2 C3 1986 Primary 25808 19816
A1 B2 C3 1985 Primary 16935 18817
I want to determine the percentage of area for each admin_2 by averaging the area across all years for each admin_2 and them computing the percentage. This is what I tried:
df['area_percentage'] = df.groupby(['country', 'admin_2'])['area'].apply(lambda x: x / x.sum())