I am trying to compare two groups using Wilcox.test()
function in R. The test works fine but there is something weird about the 95% confidence interval for the location shift parameter. It doesn't contain the estimate, what could be the reason?
Here is a part of the data to reproduce the issue.
Group y
1 B 0.18181818
2 D 0.00000000
3 B 0.09090909
4 D 0.00000000
5 B 0.00000000
6 D 0.00000000
7 B 0.09090909
8 D 0.00000000
9 B 0.00000000
10 D 0.00000000
11 B 0.00000000
12 D 0.00000000
13 B 0.00000000
14 B 0.00000000
15 D 0.15384615
16 B 0.00000000
17 D 0.04000000
18 B 0.00000000
19 D 0.00000000
20 B 0.11111111
21 D 0.03846154
22 B 0.18181818
23 D 0.07692308
24 B 0.04545455
25 D 0.08333333
26 B 0.00000000
27 D 0.00000000
28 D 0.00000000
29 B 0.00000000
30 D 0.04761905
31 B 0.00000000
32 D 0.08695652
33 B 0.00000000
34 D 0.00000000
35 B 0.00000000
36 D 0.00000000
37 B 0.00000000
38 D 0.00000000
39 B 0.04109589
40 D 0.19402985
41 B 0.06410256
42 D 0.08955224
43 B 0.00000000
44 D 0.01492537
45 B 0.00000000
46 D 0.04477612
47 B 0.01369863
48 D 0.05970149
49 B 0.09589041
50 D 0.05970149
51 B 0.01369863
52 D 0.00000000
53 B 0.03797468
54 D 0.02985075
55 B 0.00000000
56 D 0.01492537
57 B 0.08974359
58 D 0.05970149
59 B 0.02325581
60 D 0.06060606
61 B 0.16279070
62 D 0.00000000
63 B 0.00000000
64 D 0.02857143
65 B 0.04651163
66 D 0.03846154
67 B 0.02325581
68 D 0.07692308
69 B 0.00000000
70 D 0.00000000
71 D 0.01923077
72 B 0.02325581
73 D 0.21568627
74 B 0.02325581
75 D 0.00000000
76 B 0.10389610
77 D 0.06250000
78 B 0.00000000
79 D 0.04761905
80 B 0.01428571
81 D 0.06250000
82 B 0.00000000
83 D 0.00000000
84 B 0.00000000
85 D 0.01818182
86 B 0.01298701
87 D 0.06250000
88 B 0.02173913
89 D 0.06250000
90 B 0.00000000
91 D 0.00000000
92 B 0.01298701
93 D 0.04687500
94 B 0.03125000
95 D 0.02272727
96 B 0.05714286
97 D 0.07812500
98 D 0.00000000
99 B 0.02666667
100 D 0.05000000
101 B 0.00000000
102 D 0.09523810
103 B 0.00000000
104 D 0.01449275
105 B 0.00000000
106 D 0.04347826
107 B 0.05555556
108 D 0.00000000
109 B 0.05555556
110 D 0.00000000
111 B 0.13636364
112 D 0.00000000
113 B 0.00000000
114 D 0.00000000
115 B 0.04545455
116 D 0.50000000
117 B 0.00000000
118 D 0.00000000
119 B 0.05555556
120 D 0.50000000
121 B 0.00000000
122 D 0.50000000
123 B 0.04545455
124 D 0.00000000
125 B 0.00000000
126 D 0.00000000
127 B 0.16000000
128 D 0.00000000
129 B 0.08000000
130 D 0.00000000
131 B 0.08000000
132 D 0.00000000
133 B 0.00000000
134 D 0.40000000
135 B 0.04000000
136 D 0.00000000
137 B 0.12000000
138 D 0.20000000
139 B 0.16000000
140 B 0.00000000
141 B 0.06896552
142 B 0.10344828
143 D 0.14285714
144 B 0.00000000
145 D 0.00000000
146 B 0.31034483
147 D 0.00000000
148 B 0.08695652
149 D 0.00000000
150 B 0.03448276
151 D 0.12500000
152 B 0.03448276
153 B 0.00000000
154 D 0.00000000
155 B 0.03448276
156 D 0.00000000
157 B 0.10714286
158 D 0.12500000
159 B 0.10526316
160 D 0.00000000
161 B 0.00000000
162 D 0.66666667
163 B 0.00000000
164 D 0.00000000
165 B 0.13333333
166 D 0.00000000
167 B 0.00000000
168 B 0.00000000
169 D 0.00000000
170 B 0.12500000
171 B 0.00000000
172 B 0.00000000
173 B 0.25000000
174 B 0.37500000
175 B 0.00000000
176 B 0.37500000
177 B 0.25000000
178 B 0.00000000
179 B 0.00000000
180 B 0.25000000
181 B 0.00000000
182 B 0.12500000
183 B 0.00000000
184 B 0.85714286
185 B 0.07142857
186 B 0.07142857
187 B 0.00000000
188 B 0.00000000
189 B 0.00000000
190 B 0.00000000
191 B 0.06666667
192 B 0.00000000
193 B 0.00000000
194 B 0.13333333
195 B 0.09523810
196 B 0.00000000
197 B 0.00000000
198 B 0.09523810
199 B 0.00000000
200 B 0.00000000
201 B 0.09523810
202 B 0.14285714
203 B 0.23809524
204 B 0.03703704
205 B 0.10526316
206 B 0.00000000
207 B 0.33333333
208 B 0.20000000
209 B 0.20000000
210 B 0.00000000
211 B 0.22727273
212 B 0.00000000
213 B 0.00000000
214 B 0.00000000
215 B 0.00000000
216 B 0.04000000
217 B 0.00000000
218 B 0.00000000
219 B 0.00000000
Here is is my code
wilcox.test(y~Group,data=ds,conf.int=T)
Then I get the following output from the code
Wilcoxon rank sum test with continuity correction
data: y by Group
W = 5817, p-value = 0.6892
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
-1.284460e-05 2.162369e-06
sample estimates:
difference in location
4.911307e-05