import pandas as pd
import numpy as np
import keras
import tensorflow
from keras.models import Model
from keras.layers import Dense
from keras import optimizers
from keras.preprocessing.image import ImageDataGenerator
from keras.preprocessing import image
trdata = ImageDataGenerator()
traindata = trdata.flow_from_directory(directory="path",target_size=(224,224))
tsdata = ImageDataGenerator()
testdata = tsdata.flow_from_directory(directory="path", target_size=(224,224))
from keras.applications.vgg16 import VGG16
vggmodel = VGG16(weights='imagenet', include_top=True)
vggmodel.summary()
for layers in (vggmodel.layers)[:19]:
print(layers)
layers.trainable = False
#flatten_out = tensorflow.keras.layers.Flatten()(vggmodel.output)
#fc1 = tensorflow.keras.layers.Dense(units=4096,activation="relu")(flatten_out)
#fc2 = tensorflow.keras.layers.Dense(units=4096,activation="relu")(fc1)
#fc3 = tensorflow.keras.layers.Dense(units=256,activation="relu")(fc2)
#predictions = tensorflow.keras.layers.Dense(units=3, activation="softmax")(fc3)
X= vggmodel.layers[-2].output
predictions = Dense(units=3, activation="softmax")(X)
model_final = Model(vggmodel.input, predictions)
model_final.compile(loss = "categorical_crossentropy", optimizer = optimizers.SGD(lr=0.001, momentum=0.9), metrics=["accuracy"])
model_final.summary()
from keras.callbacks import ModelCheckpoint, LearningRateScheduler, TensorBoard, EarlyStopping
checkpoint = ModelCheckpoint("vgg16_1.h5", monitor='val_acc', verbose=1, save_best_only=True, save_weights_only=False, mode='auto', period=1)
early = EarlyStopping(monitor='val_acc', min_delta=0, patience=40, verbose=1, mode='auto')
model_final.fit_generator(generator= traindata, steps_per_epoch= 95, epochs= 100, validation_data= testdata, validation_steps=7, callbacks=[checkpoint,early])
i am classifying emotion in positive, negative and neutral.
i a, using Vgg16 transfer learning model.
though i m still not getting better validation accuracy. things i've tried:
increase the number of training data
layers.trainable=False/True
learning rate:0.0001,0.001,0.01
Activation function= relu/softmax
batch size= 64
optimizers= adam/sgd
loss fn= categoricalcrossentrpy / sparsecategoricalcrossentrpy
momentum =0.09 /0.9
also, i tried to change my dataset color to GRAY and somehow it gave better accuracy than previous COLOR IMAGE but it is still not satisfactory. i also changed my code and add dropout layers but still no progress.
i tried with FER2013 dataset it was giving me pretty decent accuracy.
these are the results on the FER dataset: accuracy: 0.9997 - val_accuracy: 0.7105
but on my own dataset(which is pretty good) validation accuracy is not increasing more than 66%.
what else can I do to increase val_accuracy?