I posted this question some time ago ago on CrossValidated, but no one has been able to answer it yet, so I've decided to post it here just in case:
I'm using auto_arima()
function from Python pmdarima
library to determine the best ARIMA model.
The results of one of my models are:
SARIMAX Results
=========================================================================================
Dep. Variable: y No. Observations: 96
Model: SARIMAX(2, 1, 1)x(1, 1, 1, 4) Log Likelihood -205.932
Date: Mon, 27 Jun 2022 AIC 423.863
Time: 15:29:13 BIC 438.928
Sample: 0 HQIC 429.941
- 96
Covariance Type: opg
==============================================================================
coef std err z P>|z| [0.025 0.975]
------------------------------------------------------------------------------
ar.L1 -0.3863 0.167 -2.316 0.021 -0.713 -0.059
ar.L2 0.4234 0.071 5.957 0.000 0.284 0.563
ma.L1 0.4638 0.181 2.562 0.010 0.109 0.819
ar.S.L4 0.6404 0.176 3.644 0.000 0.296 0.985
ma.S.L4 -0.8840 0.139 -6.352 0.000 -1.157 -0.611
sigma2 5.3147 0.620 8.572 0.000 4.100 6.530
===================================================================================
Ljung-Box (L1) (Q): 0.01 Jarque-Bera (JB): 82.63
Prob(Q): 0.92 Prob(JB): 0.00
Heteroskedasticity (H): 3.56 Skew: -1.23
Prob(H) (two-sided): 0.00 Kurtosis: 6.97
===================================================================================
Warnings:
[1] Covariance matrix calculated using the outer product of gradients (complex-step).
I'm familiar with Ljung-Box and Jarque-Bera tests here, and I know how to interpret the heteroskedasticity test results (null hypothesis: homoskedasticity). However, I don't know which specific test is that heteroskedasticity test.
I didn't find this information on pmdarima
website.
Any idea about which specific heteroskedasticity test is included in Python pmdarima
auto_arima()
results?
Thanks!