I have a (C++) program where, in one of its dll's, the following is done:
if (m_Map.GetMaxValue() >= MAX_CLASSES) {
I have two binaries of this program (compiled with various versions of Visual Studio), one where MAX_CLASSES was #define'd to 50, and one where it was 75. These binaries were made from different branches of the code and the other functionality is different as well. What I need is a version of the binary where the MAX_CLASSES was defined as 50, except with the higher limit i.e. 75.
So a sane person would change the constant in the source code of the branch I need, rebuild and go home. But, building this software is complex because it's old, the dependencies and tooling are old, etc.; plus I have issues with building the installers, and data and so on. So, I thought, how about I just patch this binary so that this one constant is changed directly in the DLL. I have vague recollections of doing similar things in the 1990's for, eh, probably 'educational' purposes.
But times have changed and I barely remember doing it, let alone how I did things back then. I opened the DLL (one where the limit is set to 75, this is the binary I have at hand - I will have to re-do this as soon as I have the actual binary with the 50 limit, so the following references 75 i.e. 0x4b for illustrating the principle) in Ghidra and after some poking around, I found the following:
18005160e 3c 4b CMP AL,0x4b
180051610 0f 82 19 JC LAB_18005172f
01 00 00
Which in the decompiler window I could link back to
if (bVar3 < 0x4b)
and some operations after that that I can map to the source code of the function I have.
Now my questions are:
how do I interpret the values above (the Ghidra output) wrt to the binary layout of the dll? When I hover over the first column value ('18005160e') in Ghidra, I get values for 'imagebase offset', 'memory block offset', 'function offset' and 'byte source offset'. Is this 'byte source offset' the physical address from the start of the dll where these instructions start? The actual value in this hover balloon is 50a0eh - is that Ghidra's notation for 0x50a0e ? I.e. does the trailing 'h' denote 'hex'?
I then tried to open the dll in a regular hex editor ('Hex Editor Neo' which I like to use to view/edit binary data files), and went to offset 0x50a0e, and looked for the values '3c 4b' around there which I didn't find. I searched for this byte sequence in the whole file, and found 7 occurrences, none of which are around 0x50a0e, leading me to think I'm misinterpreting Ghidra's 'byte source offset' here.
how do I make a 'patcher' for this? I would think what I need is a program that only does
FILE* fh = fopen('mydll.dll); fseek(fh, 0x[magic constant]); fwrite(fh, 0x4b); fclose(fh);
where '0x[magic constant]' is hopefully just the value I got from Ghidra in 'byte source offset'? Or is there anything else I need to consider here? Is there any software tool that can generate a patcher program?
Thanks.