I want to study mixture Copula for reliability analysis.however I can't construct RVINEMatrix , Therefore, the probability integral transformation (PIT) cannot be performed、 The copula used in H-equation to convert related variables into independent variables cannot be filled with mixed copulas。 Here is my code:
copula1 <- mixCopula(list(claytonCopula(param = 1.75,dim = 2),
frankCopula(param = 0.718,dim = 2),
gumbelCopula(param = 1.58,dim = 2)),w=c(0.4492,0.3383,0.2125))
copula2 <- mixCopula(list(frankCopula(param = 0.69,dim = 2),
gumbelCopula(param = 1.48,dim = 2),
claytonCopula(param = 1.9,dim = 2)),w=c(0.3784,0.3093,0.3123))
copula3 <- mixCopula(list(frankCopula(param = 7.01,dim = 2),
claytonCopula(param = 0.75,dim = 2),
gumbelCopula(param = 1.7,dim = 2)),w=c(0.4314,0.2611,0.3075))
copula4 <- mixCopula(list(gumbelCopula(param = 1.21,dim = 2),
claytonCopula(param = 0.89,dim = 2),
frankCopula(param = 3.62,dim = 2)),w=c(0.3306,0.2618,0.4076))
.......
Matrix <- c (5, 4, 3, 2, 1,
0, 4, 3, 2, 1,
0, 0, 3, 2, 1,
0, 0, 0, 2, 1,
0, 0, 0, 0, 1)
Matrix <- matrix(Matrix, 5, 5)
family1 <- c(0,copula10,copula9,copula7, copula4,
0, 0, copula8,copula6, copula3,
0, 0, 0, copula5, copula2,
0, 0, 0, 0, copula1,
0, 0, 0, 0, 0)
family1 <- matrix(family1, 5, 5)
par <- c(0, 0.2, 0.5,0.32, 0.50,``
0, 0, 0.5, 0.98, 0.5,
0, 0, 0, 0.9 , 0.5,
0, 0, 0, 0, 0.39,
0, 0, 0, 0, 0)
par <- matrix(par, 5, 5)
par2 <- c(0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
0, 0, 0, 0, 0)
par2 <- matrix(par2, 5, 5)
RVM <- RVineMatrix(Matrix = Matrix, family = family1,
par = par, par2 = par2,
names = c("V1", "V2", "V3", "V4", "V5"),check.pars = TRUE)
so could you help me to construct the rvinematrix ? or Achieve this by other means. thanks!