Apologies in advance. I am attempting to recreate this CNN (from the Keras Code Examples), with another dataset. https://keras.io/examples/vision/image_classification_from_scratch/
The dataset I am using is one for retinal scans, and classifies images on a scale from 0-4. So, it's a multi-label image classification.
The Keras example used is binary classification (cats v dogs), though I would have hoped it wouldn't make much difference (maybe this is a big assumption on my part).
I skipped the 'image augmentation' part of the walkthrough. So, I have not created the
data_augmentation = keras.Sequential(
[
layers.RandomFlip("horizontal"),
layers.RandomRotation(0.1),
]
)
part. So, instead of:
def make_model(input_shape, num_classes):
inputs = keras.Input(shape=input_shape)
# Image augmentation block
x = data_augmentation(inputs)
# Entry block
x = layers.Rescaling(1.0 / 255)(x)
.......
at the beginning of the model, I have:
def make_model(input_shape, num_classes):
inputs = keras.Input(shape=input_shape)
# Image augmentation block
x = keras.Sequential(inputs)
# Entry block
x = layers.Rescaling(1.0 / 255)(x)
.......
However I keep getting different errors no matter how much I try to change things around, such as "TypeError: Keras symbolic inputs/outputs do not implement __len__."
, or "ValueError: Exception encountered when calling layer "rescaling_3" (type Rescaling)."
.
What am I missing here?