I'm using the midas_r package and I'm wondering if there is a possibility to lower the MIDAS model sensitivity for the starting value of a weighting function to minimize my error metric.
I did a simulation with different starting values and I observe that the forecasting results are quite sensitive to the initial values. There is around 30% difference between the min and max Root Mean Square Forecast Error (RMSFE) for the simulation.
I simulated the starting value distribution below :
df<-setNames(data.frame(matrix(ncol=2,nrow=n_simulation)),c('Starting_value','RMSFE'))
for ( i in 1:n_simulation){
randomvalue_1 <- runif(1,-5.0,5.0)
randomvalue_2 <- runif(1,-5.0,5.0)
randomvalue_3 <- runif(1,-5.0,5.0)
random_vecteur=c(randomvalue_1,randomvalue_2)
mod1 <- midas_r(target_data ~ mls(daily_data, 1:2, 25, nealmon) + mls(target_data, 1:1, 1),
start=list(daily_data=random_vecteur),Ofunction = 'optim',method='Nelder-Mead')
##Calculate average forecasts
avgf <- average_forecast(list(mod1),
data=list(daily_data=daily_data,target_data=target_data),
insample=1:132,outsample=133:180,
type="rolling",
measures=c("MSE","MAPE","MASE"),
fweights=c("EW","BICW","MSFE","DMSFE"))
df$Starting_value[i]=paste('(',paste(toString(random_vecteur),')'))
df$`RMSFE`[i]=sqrt(avgf$accuracy$individual$MSE.out.of.sample[1])}
Is there something that I can do to lower the model sensitivity, Or I'm doing something wrong? I tried to use the update function #update(Ofunction='nls') as suggested in Mixed Frequency Data Sampling Regression (2016) Models: The R Package midasr, but I still observe the sensitivity.
I'm willing to share my data if needed
Thank you!