0

I got a little confused when trying to solve this level and I got even more confused when I read this solution.

I thought that the contract object loaded in the browser console was the PuzzleWallet contract, because when I look at its ABI, there are all the functions from that contract and none from the PuzzleProxy. And the PuzzleWallet does not inherit from any other contract. I don't understand how it is possible to call proposeNewAdmin() function from the PuzzleProxy contract, if it does not inherit from PuzzleProxy...

On the other hand, if the contract object in the browser console is the PuzzleProxy, why there are all the functions from the PuzzleWallet in the ABI and none from the PuzzleProxy?

Here is the Ethernaut level.

The contracts are:

// SPDX-License-Identifier: MIT
pragma solidity ^0.6.0;
pragma experimental ABIEncoderV2;

import "@openzeppelin/contracts/math/SafeMath.sol";
import "@openzeppelin/contracts/proxy/UpgradeableProxy.sol";

contract PuzzleProxy is UpgradeableProxy {
    address public pendingAdmin;
    address public admin;

    constructor(address _admin, address _implementation, bytes memory _initData) UpgradeableProxy(_implementation, _initData) public {
        admin = _admin;
    }

    modifier onlyAdmin {
      require(msg.sender == admin, "Caller is not the admin");
      _;
    }

    function proposeNewAdmin(address _newAdmin) external {
        pendingAdmin = _newAdmin;
    }

    function approveNewAdmin(address _expectedAdmin) external onlyAdmin {
        require(pendingAdmin == _expectedAdmin, "Expected new admin by the current admin is not the pending admin");
        admin = pendingAdmin;
    }

    function upgradeTo(address _newImplementation) external onlyAdmin {
        _upgradeTo(_newImplementation);
    }
}

contract PuzzleWallet {
    using SafeMath for uint256;
    address public owner;
    uint256 public maxBalance;
    mapping(address => bool) public whitelisted;
    mapping(address => uint256) public balances;

    function init(uint256 _maxBalance) public {
        require(maxBalance == 0, "Already initialized");
        maxBalance = _maxBalance;
        owner = msg.sender;
    }

    modifier onlyWhitelisted {
        require(whitelisted[msg.sender], "Not whitelisted");
        _;
    }

    function setMaxBalance(uint256 _maxBalance) external onlyWhitelisted {
      require(address(this).balance == 0, "Contract balance is not 0");
      maxBalance = _maxBalance;
    }

    function addToWhitelist(address addr) external {
        require(msg.sender == owner, "Not the owner");
        whitelisted[addr] = true;
    }

    function deposit() external payable onlyWhitelisted {
      require(address(this).balance <= maxBalance, "Max balance reached");
      balances[msg.sender] = balances[msg.sender].add(msg.value);
    }

    function execute(address to, uint256 value, bytes calldata data) external payable onlyWhitelisted {
        require(balances[msg.sender] >= value, "Insufficient balance");
        balances[msg.sender] = balances[msg.sender].sub(value);
        (bool success, ) = to.call{ value: value }(data);
        require(success, "Execution failed");
    }

    function multicall(bytes[] calldata data) external payable onlyWhitelisted {
        bool depositCalled = false;
        for (uint256 i = 0; i < data.length; i++) {
            bytes memory _data = data[i];
            bytes4 selector;
            assembly {
                selector := mload(add(_data, 32))
            }
            if (selector == this.deposit.selector) {
                require(!depositCalled, "Deposit can only be called once");
                // Protect against reusing msg.value
                depositCalled = true;
            }
            (bool success, ) = address(this).delegatecall(data[i]);
            require(success, "Error while delegating call");
        }
    }
} 

The contract.abi object on the browser console is: enter image description here

I understand the concept of proxy patterns. But I thought that it would be done via delegatecall() functions. For example, the addToWhiteList() function on the PuzzleWallet contract would be called by a function as follows on the PuzzleProxy contract:

function addToWhitelist(address _add) external {
    puzzleWalletAddress.delegatecall(abi.encodeWithSignature("addToWhitelist(address)", _add);)
}

Hopefully my question here is not as confusing as I got while trying to solve this level :)

Appreciate very much if anyone coould help me! Thanks!

WestC
  • 11
  • 3

1 Answers1

0

I also got confused by the same thing :)

The answer is that they created the Web3 contract object with the ABI of the logic contract but with the address of the proxy contract so you can interact with the logic as if there wasn't a proxy pattern under the hood.

In reality it is calling the proxy contract with the data of a function of the logic contract. As the function doesn't exist in the proxy, its fallback function runs and redirects the call to the logic contract via delegatecall.

So if you want to call proposeNewAdmin() in the proxy, call the contract mounted in the console (aka the proxy contract) but instead of using any function from the ABI defined there (which is the logic abi), make a generic transaction calling proposeNewAdmin(). As the function does exist in the proxy, it won't trigger the fallback.

web3.eth.abi.encodeFunctionSignature("proposeNewAdmin(address)");
> '0xa6376746'

web3.eth.abi.encodeParameter("address", player);
> '0x000000000000000000000000c3a005e15cb35689380d9c1318e981bca9339942'

contract.sendTransaction({ data: '0xa6376746000000000000000000000000c3a005e15cb35689380d9c1318e981bca9339942' });