While doing certain computations involving the Rogers L-function, the following result was generated by Wolfram Alpha:
I wanted to verify this result in Pari/GP by means of the lindep function, so I calculated the integral to 20 digits in WA, yielding:
11.3879638800312828875
Then, I used the following code in Pari/GP:
lindep([zeta(2), zeta(3), 11.3879638800312828875])
As pi^2 = 6*zeta(2), one would expect the output to be a vector along the lines of:
[12,12,-3]
because that's the linear dependency suggested by WA's result. However, I got a very elaborate vector from Pari/GP:
[35237276454, -996904369, -4984618961]
I think the first vector should be the "right" output of the Pari code sample.
Questions:
- Why is the lindep function in Pari/GP not yielding the output one would expect in this case?
- What can I do to make it give the vector that would be more appropriate in this situation?