I am struggling to add an additional constraint into my loss function (Keras, tensorflow)
My original loss function is:
self.__loss_fn = tf.reduce_mean(
tf.square( self.__psiNNy
- tf.matmul(self.__psiNNx, self.__K) )
The additional constraint is related to impose unitarity (K.T K=1). So, my new loss function looks like
self.__loss_fn = tf.reduce_mean(
tf.square( self.__psiNNy
- tf.matmul(self.__psiNNx, self.__K) ) )
+ tf.multiply(alpha, tf.matmul(tf.transpose(self.__K),self.__K)-1))
where alpha stands for a penalty coefficient.
Running the code, instead of providing a singular value for the loss. It gives an array:
Epoch - 0 Loss - [[-0.3633499 -1.2530719 -1.29390422 ... -0.90075779 -0.81838405
-0.94197399]
[-1.2530719 14.31707269 14.78048348 ... -5.04269215 -5.24336678
-0.27613182]
[-1.29390422 14.78048348 15.89136624 ... -5.83845412 -6.28395005
-0.08354599]
...
[-0.90075779 -5.04269215 -5.83845412 ... 1.25852317 0.25653466
-0.60421091]
[-0.81838405 -5.24336678 -6.28395005 ... 0.25653466 5.08378911
-4.45022781]
[-0.94197399 -0.27613182 -0.08354599 ... -0.60421091 -4.45022781
2.03832155]] LR - 0.0001 Time - 1.472019910812378
I hope that you can help