I have a list of locations and their weights (calculated distances apart) in a matrix. I would like the optimal solution for each location having 3 connections, minimizing total distance.
costs6 <- matrix(c(0,399671,1525211,990914,1689886,1536081,399671,0,1802419,1128519,1964930,1603803,1525211,1802419,0,814942,164677,943489,990914,1128519.4,814942.7,0,953202,565712,1689886,1964930,164677,953202,0, 1004916,1536081,1603803,943489,565712,1004916,0),ncol=6,byrow=TRUE)
plantcap <- rep(3,6)
citydemand <- rep(3,6)
plant.signs <- rep("=",6)
city.signs <- rep("=",6)
lptrans <- lp.transport(costs6,"min",plant.signs,plantcap,city.signs,citydemand)
lptrans$solution
lptrans
This LP solver returns
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 3 0 0 0 0 0
[2,] 0 3 0 0 0 0
[3,] 0 0 3 0 0 0
[4,] 0 0 0 3 0 0
[5,] 0 0 0 0 3 0
[6,] 0 0 0 0 0 3
I am wondering if there is a way to max out any Xij at 1, so that the solver will give me three ones in each column/row, rather than one 3 in each column/row? If not, is there another solver I can use to find the solution?